Predictions in Financial Time Series Data

Author: Dr. Allan Steel
Supervisor: Geraldine Gray

A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Computing from the School of Informatics and Engineering

August 2014
Declaration of Authorship

I, Dr. Allan Steel, declare that this thesis titled, 'Predictions in Financial Time Series Data' and the work presented in it are my own. I confirm that:

- This work was done wholly or mainly while in candidature for a research degree at this University.

- Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated.

- Where I have consulted the published work of others, this is always clearly attributed.

- Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work.

- I have acknowledged all main sources of help.

- Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

Dr. Allan Steel
Abstract

School of Informatics and Engineering

Master of Science in Computing

Predictions in Financial Time Series Data

by Dr. Allan Steel

For hundreds of years speculators have tried to make a profit from the financial markets by attempting the difficult task of predicting their future movements. To this end, many methods and techniques have been developed that purport to assist the market participant in generating profits. This study examines the effectiveness of technical analysis and time series modelling to forecast short term movements in the national stock markets of Germany (DAX), UK (FTSE), France (CAC), US (Dow Jones), Japan (Nikkei) and Australia (AORD).

Opinion is divided on the usefulness of technical analysis, with many people considering it to be a series of methods without value. In contrast, its use is almost ubiquitous in the financial markets, being widely employed by both professional and amateur traders. In this study a selection of technical analysis indicators were applied to daily stock market data and the results used in a variety of trading algorithms. Technical indicators that detect trends, momentum and market reversals were investigated. Results were mixed with trading algorithms based on breakout patterns and trend detection indicators generating the best profits.

Time series models were developed using exponential smoothing, Auto-Regressive Integrated Moving Average (ARIMA) and hybrid ARIMA models. One-step ahead forecasts were generated from the time series models which were then consumed in trading algorithms. In general the time series models had limited predictive capabilities on the financial markets tested and profits from the corresponding trading systems were modest.
Acknowledgements

I wish to thank my supervisor Geraldine Gray for her guidance, support and patience throughout the completion of this project. I would also like to acknowledge Dr Markus Hofmann and Laura Keyes, who along with Geraldine provided two years of stimulating and enjoyable lectures.

This study made extensive use of open source software and I would like to thank and acknowledge all the people who provided their time, skill and expertise to make world class software freely available.

Finally, I would like to thank my partner Ann for all her patience and help during the writing of this thesis.
Contents

Declaration of Authorship .. i

Abstract .. ii

Acknowledgements ... iii

Contents .. iv

List of Figures .. ix

List of Tables .. x

1 Introduction ... 1
 1.1 Background .. 1
 1.1.1 Fundamental Analysis .. 1
 1.1.2 Technical Analysis ... 2
 1.1.3 Time Series Forecasting ... 2
 1.2 Statement of the Problem ... 3
 1.3 Purpose of Study .. 4
 1.3.1 Study Objectives ... 4
 1.4 Research Question .. 4
 1.5 Methodology .. 4
 1.6 Limitations of the Study .. 5
 1.7 Scope of the Study ... 5
 1.8 Structure of Project .. 6

2 Literature Review ... 7
 2.1 Technical Analysis .. 7
 2.1.1 Trading Systems ... 7
 2.1.2 Technical Analysis Overview 9
 2.1.3 Does Technical Analysis Work? 10
 2.1.4 Moving Average Indicators 12
 2.1.5 Candlesticks Patterns ... 12
 2.1.6 Trend Reversal Oscillators .. 14
 2.2 Time Series Analysis ... 15
 2.2.1 Time Series Smoothing .. 18
2.2.1.1 Simple Moving Average (SMA) ... 18
2.2.1.2 Weighted Moving Average (WMA) 19
2.2.1.3 Exponential Moving Average (EMA) 19
2.2.1.4 Moving Averages in Practical Use 20
2.2.1.5 Holt-Winters Smoothing Models 20
2.2.2 Auto-Regression Family of Models 22
2.2.2.1 Auto-Regression ... 22
2.2.3 Auto-Regressive Moving Average (ARMA) 23
2.2.4 Auto-Regressive Integrated Moving Average (ARIMA) 24
2.2.5 ARIMA Parameter Selection .. 26
2.2.6 Hybrid Models ... 28

3 Methodology 31
3.1 Data Collection and Quality ... 31
3.2 Data Description .. 31
3.2.1 Average True Range (ATR) ... 34
3.2.2 Opening Price ... 36
3.2.3 Closing Price .. 36
3.2.4 High/Low Price ... 37
3.2.5 OH/OL Price Fluctuations ... 38
3.3 Software Tools ... 40
3.3.1 R and R Studio ... 40
3.3.2 Rapid Miner .. 40
3.4 Methodology ... 41

4 Technical Analysis 42
4.1 Introduction ... 42
4.2 Baseline Systems - Naive Methods 44
4.2.1 Naive Long System ... 44
4.2.2 Naive Reversing System .. 46
4.2.3 Summary of Naive Baseline Systems 46
4.3 Trend Detection Indicators ... 46
4.3.1 Simple Moving Average (SMA) System 47
4.3.2 Moving Average Convergence/Divergence (MACD) 49
4.3.3 Aroon Indicator .. 51
4.4 Market Reversal Indicators ... 51
4.4.1 Parabolic Stop-and-Reverse (SAR) 52
4.4.2 MACD as reversal Indicator 52
4.5 Momentum Indicators ... 53
4.5.1 Stochastic Oscillator ... 53
4.5.2 Rate of Change (ROC) ... 55
4.6 Breakout systems ... 55
4.6.1 Daily High/Low Breakout System 55
4.6.2 Breakout of 90% Quantile Level 56
4.7 Candlestick Patterns .. 56
4.7.1 Hanging Man, Hammer, Inverted Hanging Man and Shooting Star 57
4.7.2 Engulfing Candlestick ... 60
5 Time Series 63
5.1 Exponential Smoothing ... 63
 5.1.1 Time Series Base Models 63
 5.1.2 Trading System Based on Mean Model 65
 5.1.3 Trading System Based on Drift Model 65
 5.1.4 Trading System Based on Exponential Smoothing Model 66

5.2 ARIMA Models .. 67

5.3 Manual Generation of ARIMA Models 68
 5.3.1 Data Exploration .. 68
 5.3.2 Adjusting for non-uniform variance and non-stationariness . 68
 5.3.3 Examine ACF/PACF ... 69
 5.3.4 Try the chosen model(s) 70
 5.3.5 Model Residuals .. 71
 5.3.6 Calculate forecast ... 73

5.4 Automatic Generation of ARIMA Models 74

5.5 Trading the ARIMA Models 74
 5.5.1 System 1 - Close Price vs Forecast 75
 5.5.2 System 2 - Forecast vs Previous Forecast 75

5.6 Hybrid ARIMA Models .. 76

5.7 Predicting Closing Price 78
 5.7.1 ARIMA/Artificial Neural Networks (ANN) 78
 5.7.2 ARIMA/k-Nearest Neighbour (k-NN) 79

5.8 Predicting Up or Down - Categorical Label 80
 5.8.1 ARIMA/Artificial Neural Networks (ANN) 81
 5.8.2 ARIMA/k-Nearest Neighbour (k-NN) 81
 5.8.3 ARIMA/Support Vector Machine (SVM) 82

6 Analysis 84
6.1 Introduction ... 84

6.2 Technical Analysis ... 84
 6.2.1 Baseline Systems .. 84
 6.2.2 Trend Detection ... 86
 6.2.3 Market Reversal Indicators 88
 6.2.4 Momentum Indicators 89
 6.2.5 Breakout systems ... 90
 6.2.6 Candlestick Patterns 91

6.3 Time Series Analysis ... 92
 6.3.1 Exponential Smoothing 92
 6.3.2 ARIMA Models ... 93
 6.3.3 ARIMA Hybrids - Predicting Closing Price 94
 6.3.3.1 ARIMA/Artificial Neural Networks (ANN) 94
 6.3.3.2 ARIMA/k-Nearest Neighbour (k-NN) 95
 6.3.4 ARIMA Hybrids - Predicting Up Down with Categorical Label 96
 6.3.4.1 ARIMA/Artificial Neural Networks (ANN) 96
 6.3.4.2 ARIMA/k-Nearest Neighbour (k-NN) 97
Contents

6.3.4.3 ARIMA/Support Vector Machine (SVM) 97
6.4 Conclusion ... 98
6.4.1 Research question revisited .. 100
6.4.2 Future Work ... 100

A R Code

A.1 Chapter 4 ... 102
A.1.1 Chapter 4 Results Generation ... 102
A.1.2 Naive Systems ... 119
 A.1.2.1 Naive Long System .. 119
 A.1.2.2 Naive Long System trading close to close 119
 A.1.2.3 Naive Reversing System ... 120
A.1.3 Trend Detection Systems .. 121
 A.1.3.1 SMA ... 121
 A.1.3.2 MACD - trend indicator ... 122
 A.1.3.3 Aroon trend indicator .. 123
A.1.4 Market Reversal Indicator .. 124
 A.1.4.1 SAR reversal indicator .. 124
 A.1.4.2 MACD as Reversal Indicator 125
 A.1.4.3 Stochastic reversal indicator 126
 A.1.4.4 Rate of Change(ROC) .. 127
A.1.5 Breakout Systems .. 128
 A.1.5.1 Daily High / Low Breakout System 128
 A.1.5.2 Breakout of 90% Quantile Level 128
A.1.6 Candlestick Systems ... 130
 A.1.6.1 Hammer and Inverted Hammer Candlestick Pattern 130
 A.1.6.2 Hammer and Inverted Hammer Candlestick Pattern in a
 Trending Market ... 130
 A.1.6.3 Engulfing Candlestick Pattern 131
 A.1.6.4 Engulfing Candlestick Pattern in a Trending Market 132
 A.1.6.5 Doji Candlestick Pattern in a Trending Market 133
A.2 Chapter 5 ... 134
A.2.1 Exponential Smoothing ... 152
A.2.2 System 1 Trading Algorithm .. 153
A.2.3 System 2 Trading Algorithm .. 153
A.2.4 Trading System for Categorical Label 154
A.3 Utility Code ... 155

B Technical Indicators

B.1 Moving Average Convergence Divergence (MACD) 160
B.2 Aroon Indicator .. 161
B.3 Parabolic Stop-and-Reverse (SAR) 161
B.4 Stochastic .. 162
B.5 Rate of Change(ROC) ... 163

C Summary of Results

164
List of Figures

2.1 Candlestick representation of daily open and close prices 12
2.2 Examples of well known candlestick patterns 13
2.3 Candlesticks and market movement ... 13
2.4 A time series decomposed into primary components 16
2.5 A stationary time series ... 17
2.6 An additive time series .. 17
2.7 A multiplicative time series .. 18
2.8 Exponential smoothing of a time series with no seasonality or trend ... 21
2.9 Exponential smoothing of a time series with trend though no seasonality . 22
2.10 Exponential smoothing of a time series with trend and seasonality 22
2.11 Correlogram of auto-correlations ... 27
2.12 Correlogram of partial auto-correlations 27

3.1 Open, high, low and closing prices (OHLC) 32
3.2 Graph of DAX between 2000 and 2013 33
3.3 Graph of DAX in 2013 .. 33
3.4 ATR of DAX Divided by Closing Price 35

4.1 Situation in which using a stop loss is beneficial 49
4.2 Situation in which using a stop loss is detrimental 49
4.3 Hammer and Inverted Hammer candlestick patterns 57
4.4 Hanging Man and Shooting Star candlestick patterns 57
4.5 DAX candlestick patterns occurring in April 2014 58
4.6 Engulfing candlestick patterns ... 60
4.7 Doji candlestick patterns ... 61

5.1 Forecasts generated by mean and drift methods 64
5.2 Forecasts generated by mean and drift methods and actual data 65
5.3 FTSE 100 index between the years 2000 to 2013 68
5.4 First difference of FTSE 100 between the years 2000 to 2013 69
5.5 ACF of FTSE 100 between the years 2000 to 2013 70
5.6 PACF of FTSE 100 between the years 2000 to 2013 70
5.7 FTSE 100 ARIMA model residuals ... 72
5.8 ACF plot of the FTSE 100 ARIMA model residuals 72
5.9 Histogram of the FTSE 100 ARIMA model residuals 73
5.10 Rapid Miner hybrid ARIMA process 77
5.11 Rapid Miner cross-validation operator 77
5.12 SVM margins and slack variables .. 82
List of Tables

2.1 Example of a Simple Moving Average .. 19
2.2 Example of a Weighted Moving Average .. 20
2.3 Times series and matching models .. 26

3.1 First 6 rows of the DAX data set. .. 34
3.2 Final 6 rows of the DAX data set. ... 34
3.3 DAX summary statistics ... 34
3.4 Average True Range of DAX .. 35
3.5 Opening Prices in relation to previous day’s High and Low values 36
3.6 Closing Prices in relation to previous day’s High and Low values 37
3.7 Daily Open to Close Price Range ... 37
3.8 Quantiles of the open to close price range 37
3.9 Today’s H/L Prices in relation to previous day’s HL 38
3.10 Minor daily price fluctuation ... 39
3.11 Quantiles of Minor daily price fluctuation. 39
3.12 Major daily price fluctuation. ... 39
3.13 Quantiles of Major daily price fluctuation. 40

4.1 Results from the Naive Long System .. 45
4.2 Indice Prices in 2000 and 2013. ... 45
4.3 Results from the Naive Long System trading close to close 45
4.4 Results from the Naive Reversing System. 46
4.5 Results from a system based on SMA ... 48
4.6 Results from a system based on SMA with stop loss 50
4.7 Results from a system using MACD as a trend indicator 50
4.8 Results from a system based on the Aroon indicator 51
4.9 Results from a system based on the Aroon indicator with stop loss 51
4.10 Impact of using stop loss with Aroon trend indicator 52
4.11 Results from a system based on the SAR indicator 53
4.12 Results from a system based on MACD as trend reversal indicator 53
4.13 Results from a system based on the Stochastic indicator 54
4.14 Results from a system based on the Stochastic indicator with a stop loss 54
4.15 Results from a system based on the ROC indicator 55
4.16 Results from the Daily High/Low Breakout System 56
4.17 Results from a breakout system using the day’s the minor move 56
4.18 Results from a system based on the Hammer and Inverted Hammer candlestick patterns .. 59
4.19 Results from a system based on the Hammer and Inverted Hammer candlestick patterns occurring in a downtrend .. 60
4.20 Results from a system based on the Engulfing candlestick pattern 60
4.21 Results from a system based on the Engulfing candlestick pattern in a trending market ... 61
4.22 Results from a system based on the Doji candlestick pattern in a trending market ... 62
5.1 Error measures from mean and drift models .. 64
5.2 Results from trading the predictions generated by a mean exponential smoothing system ... 65
5.3 Results from trading the predictions generated by a drift exponential smoothing system ... 66
5.4 Taxonomy of exponential smoothing methods 66
5.5 Results from trading the predictions generated by a moving window exponential smoothing system .. 67
5.6 AIC, AICc and BIC results from alternative ARIMA models 71
5.7 Box Ljung test of FTSE 100 ARIMA model residuals 73
5.8 Forecast for FTSE 100 generated from the ARIMA model 74
5.9 ARIMA models chosen for the indice data sets 74
5.10 Results from trading System 1 using the forecasts generated by the ARIMA models ... 75
5.11 Results from trading System 2 using the forecasts generated by the ARIMA models ... 76
5.12 Results from passing closing price predictions from hybrid ARIMA/ANN model to System 1 ... 79
5.13 Results from passing closing price predictions from hybrid ARIMA/ANN model to System 2 ... 79
5.14 Results from passing closing price predictions from hybrid ARIMA/k-NN model to System 1 ... 80
5.15 Results from passing closing price predictions from hybrid ARIMA/k-NN model to System 2 ... 80
5.16 FTSE 100 data set with “U” and “D” label .. 80
5.17 Results from a trading system using the forecast of categorical label ”U/D” from hybrid ARIMA/ANN model .. 81
5.18 Results from a trading system using the forecast of categorical label ”U/D” from hybrid ARIMA/k-NN model .. 81
5.19 Results from a trading system with a stop loss using the forecast of categorical label ”U/D” from hybrid ARIMA/k-NN model 82
5.20 Results from a trading system using the forecast of categorical label ”U/D” from hybrid ARIMA/SVM model .. 83
6.1 Returns from a “Buy and Hold” technique ... 85
6.2 Results from the Naive Reversing System ... 86
6.3 Aroon system results minus Naive Reversing results 88
6.4 H/L breakout system results minus Naive Reversing results 90
6.5 90% quantile level breakout system minus Naive Reversing results 91
6.6 ARIMA models chosen for the indice data sets 93
6.7 ARIMA system results minus Naive Reversing results 94
6.8 ARIMA/ANN closing price system results minus Naive Reversing results 95
6.9 ARIMA/k-NN closing price system results minus Naive Reversing results 96
6.10 ARIMA/k-NN U/D system results minus Naive Reversing results 97
6.11 ARIMA/SVM U/D system results minus Naive Reversing results 97

C.1 Chapter 4 Dax Results ... 164
C.2 Chapter 4 CAC Results ... 165
C.3 Chapter 4 FTSE Results ... 166
C.4 Chapter 4 Dow Results ... 167
C.5 Chapter 4 Nikkei Results ... 168
C.6 Chapter 4 AORD Results ... 169
C.7 Chapter 5 DAX Results .. 170
C.8 Chapter 5 CAC Results .. 170
C.9 Chapter 5 FTSE Results .. 171
C.10 Chapter 5 Dow Results .. 171
C.11 Chapter 5 Nikkei Results 172
C.12 Chapter 5 AORD Results 172
Chapter 1

Introduction

1.1 Background

For hundreds of years speculators have tried to make a monetary profit in financial markets by predicting the future price of commodities, stocks, foreign exchange rates and more recently futures and options. Over the last few decades these efforts have increased markedly, using a variety of techniques (Hsu, 2011), which can be broadly classified into three categories:

- fundamental analysis
- technical analysis
- traditional time series forecasting

1.1.1 Fundamental Analysis

Fundamental analysis makes use of basic market information in order to predict future movements of an asset. If an investor was looking at a particular stock’s fundamental data they would consider information such as revenue, profit forecasts, supply, demand and operating margins etc. Speculators looking at commodities might consider weather patterns, political aspects, government legislation and so on. Effectively fundamental analysis is concerned with macro economic and political factors that might affect the future price of a financial asset. Fundamental analysis is not considered further in this study.
1.1.2 Technical Analysis

Technical analysis is the study of historical prices and patterns with the aim of predicting future prices. Practitioners of technical analysis in the past were referred to as chartists, as they believed all that was needed to know about a particular market was contained in its pricing chart. Murphy (1999) defines technical analysis as:

"Technical analysis is the study of market action, primarily through the use of charts for the purpose of forecasting future price trends."

Technical analysis (TA) is interesting as it tends to polarise opinion as to its scientific basis and effectiveness. To many people and particularly scholars in academia it is considered little more than Black Magic. Consider the words of Malkiel (1999):

"Obviously I am biased against the chartist. This is not only a personal predilection, but a professional one as well. Technical Analysis is anathema to the academic world. We love to pick on it. Our bullying tactics are prompted by two considerations: (1) the method is patently false; and (2) it’s easy to pick on. And while it may seem a bit unfair to pick on such a sorry target, just remember: it is your money we are trying to save."

However, in the world of finance technical analysis is ubiquitous and widely used (Menkhoff, 2010). In support of TA a plethora of so-called indicators have been developed over the years from simple moving averages to much more exotic offerings. Today every piece of software or online analysis tool provides the ability to place a multitude of technical indicators on a graph of a stock, commodity or any financial instrument.

Most technical indicators essentially fall into one of two main categories, ones attempting to detect the start and direction of trends and those trying to identify market reversals generally called oscillators. Trend analysis indicators include Average Direction Index (ADX), Aroon, Moving Averages and Commodity Channel Indexes (CCI). Price oscillator indicators include, Moving Average Convergence Divergence (MACD - (Appel and Dobson, 2007)), Stochastics, Relative Strength Index (RSI) and the Chande Momentum Oscillator (CMO).

1.1.3 Time Series Forecasting

The study of forecasting time series data has been an active area of study for several decades (De Gooijer and Hyndman, 2006). Series data is ordered such that the ordering is an important if not critical aspect of the data, with the requirement to maintain this ordering enforcing certain requirements on any processing. Series data can be ordered by
factors such as distance or height but typically time is the ordering encountered. Financial data is an important category of series data and a variety of well known time series forecasting methods have been applied to the problem of predicting price movements in the financial markets. These have included, exponential smoothing, auto-regressive moving average (ARMA) and auto-regressive integrated moving average (ARIMA).

A variety of smoothing algorithms have been applied to series data in general and financial data in particular. Moving averages, including simple, weighted and exponential, are widely employed by participants in financial markets to both predict future movements and quantify current conditions. Classical time series analysis such as so-called Holt-Winters exponential smoothing, the auto-regressive moving average (ARMA or Box-Jenkins model) and auto-regressive integrated moving average (ARIMA) methods have also been widely employed. In more recent years data mining techniques have been applied to the problem of financial time series prediction, for example with the use of artificial neural networks (ANNs) and support vector machines (SVM) as well as an hybrid approach of combining the classic time series techniques with the data mining methods in an attempt to leverage the strengths of each technique.

1.2 Statement of the Problem

The problem under study in this thesis is that of predicting the movement of financial markets. Financial markets include:

- Indices e.g. Dow Jones Index, FTSE 100 etc.
- Commodities e.g. gold, oil etc.
- Foreign exchange rates (also known as Forex or FX) e.g. GBP USD (price of British pounds divided by US dollars).
- Stocks e.g. Google, Apple, Barclays Bank etc.

The goal of financial traders is to detect the movement of the markets and buy instruments expected to rise in price “going long” and sell those predicted to fall in price “going short”. The markets are a neutral sum process, for every participant who gains there are those who lose.
1.3 Purpose of Study

The purpose of this study is to investigate and establish the usefulness and accuracy of a selection of technical indicators and time series analysis on the ability to predict future data movements in a group of national indice data sets.

1.3.1 Study Objectives

The objective of this study is two fold:

1. To determine if a group of popular and widely used technical indicators can be used to predict the direction of movement in a range of financial markets.

2. To investigate if traditional time series models can predict the direction of movement in a range of financial markets.

1.4 Research Question

The research question addressed in this study is:

"Can the use of technical indicators or time series analysis help to predict the future direction and movement of financial markets?"

1.5 Methodology

The following methodology was used to answer the research question:

1. The current research in the field was reviewed.

2. Appropriate data was collected, primarily from freely available sources on the internet such as Yahoo and Google.

3. Initial data investigations and visualisations were carried out on the data.

4. Based on initial analysis, “base line” systems were established that could be used to compare the performance of systems generated by technical analysis and time series modelling.
5. A number of trading algorithms were generated that consumed the output of technical analysis indicators to determine in which direction to trade the financial data at any one time.

6. Times series modelling methods were used to generate forecasts for the financial data, and these were used in trading algorithms to decide in which direction, long or short, to trade.

In summary, the output of technical and times series analysis was consumed in a range trading algorithms. The decisions regarding which direction to trade a particular stock market was based on the predictions or output of the analysis. Success was measured in terms of whether the trading systems developed can profitably predict which way to trade the financial markets.

1.6 Limitations of the Study

Limitations in this study include:

1. Choice of technical indicators - a small selection of the huge number available was selected. The selected group represent widely used examples and are drawn from the various categories available.

2. Use of financial data relating to stock market indices - daily data in the form of open, high, low and close prices (OHLC) from national stock market indices such as the Dow Jones or FTSE 100 is readily and freely available and thus was used in this study. High quality data in time frames other than daily or from alternative financial markets such commodities or foreign exchange is generally only commercially available and beyond the resources of this study.

1.7 Scope of the Study

There is a huge choice of financial data sets from which to choose and likewise many dozens of technical indicators. Given the time frame and resources available, this study employed daily data from major national indices such as the German DAX, US Dow and Japanese Nikkei. Technical indicators selected included examples from the primary categories such as trend detection and market reversal indicators.
1.8 Structure of Project

Chapter 2 is a literature review and introduction to financial market trading, the methods and theory of technical analysis and time series modelling. Financial trading systems in general are discussed along with the use and applicability of technical analysis. The classical time series methods of Holt-Winters exponential smoothing, auto-regressive moving average (ARMA or Box-Jenkins model) and auto-regressive integrated moving average (ARIMA) are introduced and explained along with more recent developments such as hybrid ARIMA models.

Chapter 3 introduces the methodology used in this study. It includes a description of the data sets employed, software and programming languages utilised and the general approach taken. Chapter 4 details the experiments carried out using a variety of technical analysis indicators and lists the results from the trading algorithms generated. Chapter 5 documents the experimental work based on the use of time series modelling to generate forecasts for the financial data sets.

Chapter 6 is an analysis of the results obtained in Chapters 4 and 5 along with conclusions and suggestions for future work. Appendix A lists all the R programming code used in study. Wherever possible this report has the analysis generated by R programming code embedded into it. Thus, all trading algorithms coded in R detailed in Chapters 4 and 5 generate results that are dynamically embedded into this report. An update or alteration of this code followed by recompilation of this manuscript updates the tables and results accordingly.

Appendix B provides additional details and background information on various technical analysis indicators. Finally, Appendix C presents all the results generated in Chapters 4 and 5 collected together by the particular financial market.
Chapter 2

Literature Review

Speculators, stock market traders, market participants or simply traders are all terms used to describe individuals and organisations who attempt to make a living from buying and selling various financial assets in a huge range of markets around the world. Clearly the ability to forecast the direction of market movements, up or down, is vital to these individuals and entities. To this end a wide variety of techniques and methods have been tried and used by the participants in the market. Further, over the last few decades academics have shown an interest in this field and attempted to quantify and justify the wide variety of techniques used.

Two areas where traders and academics have looked for help in predicting future market direction is time series forecasting and the use of technical indicators. This chapter is divided into two these general categories, time series modelling and the use of technical indicators.

2.1 Technical Analysis

2.1.1 Trading Systems

A wide variety of techniques have been employed by financial market traders in their attempts to make profits with the term “trading system” being applied generally to the methodology used. Often trading systems are “mechanical” in nature in that traders use a distinct set of rules in order to guide them as when to enter a trade, when to exit and so on. Faith (2007), one of the original and now famous “Turtle Traders” provides an excellent overview of mechanical trading systems (and how they were to become known as the “Turtles”).
Weissman (2005) makes the point that there are several aspects to a trading system. Firstly there are entry and exit signals, which are market events that trigger a speculator to enter into the market and either buy or sell a particular asset. These signals are typically events such as a fast moving average crossing a slower one, the market hitting a certain price or the occurrence of a particular chart pattern (see section 2.1.5). Other elements of a trading system include position sizing rules and money management strategies such that returns are significant, losses are minimised and the entire risk profile is controlled.

Many traders erroneously mistake entry and exit signals as being a full trading system in themselves whereas in actuality they are merely components of a system (Beau and Lucas, 1999). Likewise most, if not all, papers published by academia focus on entry and exit signals alone, which is probably a result of several factors. Firstly, entry and exit signals are important components in trading systems and are a good place to start in system development. Additionally, the other aspects of a system are not as well known and their importance is often ignored (Kaufman, 2013). Finally, testing an “entire” system as defined here is far more difficult and time consuming than considering entry and exit signals alone and often it is not practical to extend a study to include a full system. In summary there is value in considering entry and exit signal in isolation but one has to remember it is not the whole story.

Attempting to forecast stock market prices is a complex and challenging endeavour, yet one that is widely encountered. There is a large body of research published in this area which has been reviewed by Atsalakis and Valavanis (2009). Work usually focuses on either individual stocks or more commonly stock indices. Stock indices are the sum movements of many individual equities and therefore reflect the movement of the market as a whole as opposed to any one stock. Many stock market indices have been investigated including those belonging to well-developed countries such as those in Western Europe, North America etc. as well as developing markets such as those in Eastern Europe.

In trying to predict stock market movements a variety of input variables have been used. Frequently, the so-called OHLC (open, high, low and closing prices) are used as inputs along with a variety of technical indicators (Fiess and MacDonald, 2002). In addition, many authors have used a combination of markets, for example Huang et al. (2005) use both the USD/YEN exchange rate and the S&P 500 to build a prediction model for the Japanese NIKKEI index. A variety of predictive methodologies have been reported in the literature including linear and multi-linear regression, ARMA and ARIMA models, genetic algorithms (GA), artificial neural networks (ANN), random walk (RW) and the so-called buy and hold (B & H) strategy.
A variety of performance measures have been reported including both non-statistical and statistical methods. Non-statistical performance measures encountered include annual return and annual profit of a particular model as well as the hit rate or the number of times a model correctly predicts whether a market will go up or down. Alternatively a variety of statistical measures have also been employed and prominent amongst them are, mean absolute error (MAE), root mean squared (RMSE), mean squared prediction error (MSPE), correlation coefficient and autocorrelation squared correlation and Akaike’s minimum final prediction error (FPE).

Two well studied and used methodologies in stock trading are the moving average system and range breakout system as reported by (Brock et al., 1992) in one of the very earliest papers published covering technical analysis. In a moving average system (see section 4.3.1) the speculator buys into a market when its price is above the moving average and sells in the reverse situation. A large number of variations on this theme can be found, with the use of two moving averages being popular. When using two averages there is normally a “fast” one, usually of the order of 10 to 25 days, and a “slow” one in the 50 to 250 day range. In these circumstances a buy is usually triggered when the fast average crosses above the slower average. The theory is that the moving averages follow the trends in the market and thus allow the market participant to trade in the direction of the trend, which is an advantageous situation for the trader.

A second popular idea is that of breaking out of a range. Often financial markets trade between a range of values in a particular time period, essentially markets are either trending (up or down) or not trending at all but moving within a defined range. While moving in a range the lower price boundary is referred to as support and the upper one as resistance. In a breakout system the analyst buys a market when it moves beyond these resistance levels or sells when it breaks below the support. Brock et al. (1992) analysed both these two ideas and found merit in them. Using daily data from the Dow Jones industrial index they found that these strategies provided better results than those generated with random walk, AR and GARCH models.

2.1.2 Technical Analysis Overview

Technical analysis is the technique of looking at the past history of a financial market, identifying patterns and trends and utilising the information in predicting future price movements (Bulkowski, 2011). A technical indicator is a method used to identify a particular pattern, and there have been a large number developed over the years to predict situations such as the start of a trend or a reversal in price movement. A wide range of papers on technical analysis (TA) indicators and methods can be found in the
literature. Likewise technical analysis is prominent in many best selling books including Market Wizards (Schwager, 1988), New Market Wizards (Schwager, 1994) and Covel’s Trend Following (Covel, 2009). In the following sections various technical indicators are introduced and their use in predicting market movements are explored. Firstly, the question of whether technical analysis even works is addressed, as this has received attention in the literature (Marshall and Cahan, 2005, Reitz, 2006, Schulmeister, 2009, Marshall et al., 2008). Although technical analysis is widely used in the market place there is a question mark over the entire concept behind it and many people, especially academics, are highly sceptical about the validity of the entire approach.

2.1.3 Does Technical Analysis Work?

Friesen et al. (2009) have examined various price "patterns" used by traders in their systems such as “head-and-shoulders” and “double-top” patterns. The authors note that although a wide array of patterns have been identified and documented there lacks any convincing explanations for the formation of these patterns and how they can lead to profitable trading systems. The authors report that several studies based on the US equity market have identified distinct behaviours, namely the tendency for short-term momentum over 1 year to 6 months (De Bondt and Thaler, 1985, Chopra et al., 1992, Jegadeesh and Titman, 1993), longer term mean reversion and finally price reversals over the one to four week period (Jegadeesh, 1990, Lehmann, 1990, Jegadeesh and Titman, 1995, Gutierrez Jr and Kelley, 2008). These observations lend support to the success of trading systems that purport to detect and follow trends in the market (Sweeney, 1986, Levich and Thomas, 1993, Neely et al., 1997, Dueker and Neely, 2007).

The authors present a model that can explain the profitability of selected trading rules that utilise past chart patterns. One important aspect of this model is the inclusion of confirmation bias, which shows up in a wide range of decision making processes. Their model displays negative autocorrelations over the very short term, positive ones in the mid term and become negative again over the longer horizon, reflecting the documented empirical properties of US stock prices (Novy-Marx, 2012, Moskowitz et al., 2012, Fama and French, 2012). It is suggested that traders take market positions affected by their original biased view which leads to autocorrelations and price movement patterns resulting in the previously described market behaviour.

Shynkevich (2012) investigated the power of a large selection of technical trading rules to yield profits when applied a selection of small cap and technology portfolios (US stocks) between 1995 and 2010. The author chose technical indicators from four general categories:
1. standard filter rules - for example a buy is generated when prices increase from a previous low. Such a low may be defined as the lowest closing price in a particular period. In more recent years this technique has been replaced by moving averages.

2. moving averages (MA) - signals generated when short MA cross long MA.

3. support and resistance trading strategy (SR) - a buy is initiative when prices rise above a local maximum, and vice versa for a local minimum price.

4. channel breakout - related to SR, a buy/sell is triggered when a price moves outside a channel generated from highs and lows of a certain period.

The author applied a variety of parameters in each model resulting in a total of 12937 models being tested. It was reported that TA produced positive results in the first half of the time period tested, but not in the latter half. In the second half of the time period studied TA provided inferior performance than a buy-and-hold approach, i.e. a trader simply buys a particular asset and waits. The author concludes these differences in performance are due to equity markets having become more efficient in recent years which has reduced the short term predictive powers of TA.

The use of technical analysis in the finance community was studied by Menkhoff (2010) who looked into its use by professional fund managers. This study is note worthy as it used data from experienced and educated market professionals and not a wider cross-section of traders. With the advent of the internet and the explosive growth in on-line financial charting and trading sites, financial trading became accessible to the general public, resulting in huge numbers of amateur traders entering the market. All of the web sites that cater for this segment of traders offer a huge number of technical analysis indicators built into their respective charting packages and even a rudimentary visit to any of the discussion forums will demonstrate the popularity and wide spread use of technical analysis.

The author surveyed 692 fund managers in several countries, with funds of various sizes under management. The vast majority of these fund managers reported using technical analysis to some degree and particular faith was put in TA for predicting price movements in the short term of up to a few weeks, beyond which focus shifts to fundamental analysis. Further, the workers found that smaller asset manager firms make greater use of TA, possibly because deriving the information for fundamental analysis is beyond their resources. Finally, most respondents to the survey believe that human psychology is the reason TA works. In particular they suggest psychological biases in the market participants are the root cause of market trends and that TA is able to identify and follow them.
2.1.4 Moving Average Indicators

A study of moving average convergence divergence (MACD) is reported by Ulku and Prodan (2013). MACD is a technique which attempts to detect the early stage of a trend as it forms, and is widely used by market participants. It is described in more detail in Appendix B section B.1. Ulku and Prodan (2013) apply MACD to a wide range of national stock market indices comprising developed as well as emerging markets. The authors compare the MACD signals against entry signals generated from simple breakout systems (described previously). The comparison systems would generate a buy signal if the price moved higher than a moving average (MA), set at either 22, 56 and 200 days. The MACD and the comparison system using 22 day moving averages are classified as short horizon signals, while the break out of the 56 and 200 day MA are considered long horizon signals. The workers reported that the MACD indicators provide for profitable returns on 23 of 30 national indices, but that the 22 day MA performs better being positive in 27 of the 30 markets.

2.1.5 Candlesticks Patterns

Probably the oldest form of technical analysis in use today is the so-called candlestick analysis, so named because daily open and close prices are plotted such that they resemble candlesticks (Morris, 2006). Figure 2.1 is an example of daily prices being plotted as a candlestick, with this plotting methodology being ubiquitous today in trading software. Typically the colour in which the candlestick is plotted indicates whether the price went up or down over the course of the day. Many charts that are plotted in colour use green to represent days that close up and red for days that close down. The main body of the candlestick represents the movement from open to close, and the protruding lines mark the high and low of the day.

![Candlesticks Patterns](image)

Figure 2.1: Candlestick representation of daily open and close prices. Different colouring is used to distinguish between prices going up or down.
Technical analysis via candlesticks is reputed to have been developed by Munehisa Homma, a legendary trader of rice in Osaka, Japan who made a fortune analysing rice prices with candlesticks in the seventeenth century (Nison, 2001). Candlestick patterns with supposed predictive qualities can be derived from a single day or from considering a few days, usually 2 or 3, together (Bigalow, 2011). There are a huge number of patterns recorded in the literature and usually assigned exotic names such as “White Marubozu”, “Black Shooting Star” and “Hanging Man”. Examples of such named patterns can be seen in Figure 2.2.

Figure 2.2: Examples of well known patterns encountered in candlestick analysis.

Candlestick patterns are essentially visualisation tools providing an easy to comprehend view of the market movements in a particular day. However there is some vital information which is not conveyed in a candlestick. In particular the order of events isn’t displayed. Figure 2.3 shows how two days can produce the same candlestick but in actuality the price movements and volatility in them was very different. Depending upon the type of trading system being employed this could have important effects.

Figure 2.3: Candlesticks don’t provide information regarding the order of price movements. Both these daily price movements would be represented with the same candlestick pattern.
As always with technical analysis there is doubt as to the validity of the methods despite its almost universal employment. An in-depth study of the predictive power of a range of candlestick patterns on stock prices between 1992 and 2002 from the Dow Jones Industrial Average (DJIA) was carried out by (Marshall et al., 2006) in which doubt was cast on the validity of candlestick patterns to predict market movements. The workers used a range of bullish (signals that indicate a trader should buy) and bearish (signals that indicate a trader should sell) candlestick patterns to initiate trades on the various stocks. Trades were held for ten days as it was assumed that these patterns reflect short term trends and thus have a predictive power in a similar time frame. In order to quantify the results generated from the use candlestick patterns they were compared to results observed from four alternative null models. Simulated stock data was generated using a bootstrapping methodology (Efron, 1979) and then four null models were applied to the data, random walk, an autoregressive process of order one (AR(1)), a GARCH in-Mean (GARCH-M) model and an Exponential GARCH (EGARCH) model.

From the comparison of the results generated from the candlestick patterns and the four null models the workers concluded that the variety of candlestick patterns tested had no predictive power on the stocks at all. The returns from making buying and selling decisions based on candlestick patterns didn’t outperform the null models on the simulated data. As always one has to be slightly careful with results of this nature as the trading period was fixed at ten days, in other words the candlestick patterns were used as an entry signal for the trade but there wasn’t an exit signal. Further in reality use of candlesticks analysis would be incorporated into a trading system, which typically consists entry and exit signal, position sizing rules and money management strategies (Faith, 2007).

2.1.6 Trend Reversal Oscillators

Tanaka-Yamawaki and Tokuoka (2007) reported the use of several technical analysis techniques in the successful prediction of price movements in eight stocks found on the New York Stock Exchange (NYSE) by analysing tick data. The predictions were in the very short term as tick data is the most granular level reported in financial data. The workers used ten technical analysis indicators from three broad classes, namely trend indicators, oscillators to find market reversals and momentum indicators to measure the strength of the market. Combinations of indicators, typically from the different categories are usually combined by market participants into a variety of systems. In this study the ten indicators can form a possible 1023 combinations. A genetic algorithm was used to determine the best combination of indicators for each stock, resulting in a customised combination for each. Using each stock’s indicators, the next ten ticks of
data were modelled with very high accuracy, with predictions for IBM’s stock being the best at a very impressive 82%.

2.2 Time Series Analysis

The study of forecasting time series data has been an active area of study for several decades and an overview of work over 25 years has been documented by De Gooijer and Hyndman (2006). Series data is ordered such that the ordering is an important if not critical aspect of the data and the requirement to maintain this ordering enforces certain constraints on its processing. Series data can be ordered by factors such as distance or height but typically time is the ordering encountered, and thus such collections are referred to as time series. Analysis of time series data is found in a wide range of areas including, Sales Forecasting, Speech Recognition, Economic Forecasting, Stock Market Analysis, Process and Quality Control and Seismic Recordings.

In general with non-series data we are interested in the relationships between the attributes of any particular row of data and perhaps how they affect the parameter we are interested in. Frequently some kind of regression technique is used in this kind of analysis in order to answer questions such as how is rainfall in an area affected by altitude or how does fuel consumption vary with car engine size (Han et al., 2011).

However with time series data there is an additional consideration, the relationship between the attribute’s current value to that of its previous or later values. This is known as auto-correlation (Mills, 2011) and more details can be seen in section 2.2.2.1. Typically with financial data we are interested in previous values, in other words how is today’s price of a security affected by the price one, two or three days ago?

As illustrated in Figure 2.4 a time series can contain some or all of the following components:

1. Trend - the overall direction of the series, is it increasing or decreasing over time?

2. Seasonality - regular variations in the time series that is caused by re-occurring events, for example a spike in sales during the Christmas period (So and Chung, 2014).

3. Random component - additional fluctuations in the series that may be attributed to noise or other random events.

There are three primary types of time series, stationary, additive and multiplicative. Stationary series have constant amplitude without a trend element and an example can
Figure 2.4: A time series decomposed into its three primary components.

be seen in Figure 2.5. Often stationary time series are repetitive, in other words showing constant auto-correlation and are considered the easiest type to model. A stationary time series can be composed of a seasonal element and/or a random component, thus:

\[
\text{stationary time series} = \text{seasonality} + /\text{or noise}
\]

The second type of time series is the additive type. In this type all three components of the series are present, trend, seasonality and noise. The distinguishing feature here is the amplitude of the seasonal component in that it is quite regular being static over time. An example of an additive series can be seen in Figure 2.6. This time series is trending upwards overall but there is a clear repetitive pattern of peaks and troughs caused by the seasonality, with the heights of the peaks all being similar. We can consider an additive time series as:

\[
\text{additive time series} = \text{trend} + \text{seasonality} + \text{noise}
\]
Figure 2.5: Example of a stationary time series which can be made up from noise and/or a seasonal component.

Figure 2.6: Example of an additive time series which results from all three components trend, noise and seasonality.

The third type of time series, as seen in Figure 2.7 is multiplicative. This is similar to the additive version except the amplitude of the seasonality increases over time. It can be considered as:

\[
\text{multiplicative time series} = \text{trend} \times \text{seasonality} \times \text{noise}
\]

Financial time series can be considered as containing all three elements of a time series. They can show properties of a stationary time series when they are range bound and only move between two values. At other times, markets trend strongly consistently, making
new highs or lows and exhibit properties of an additive and occasionally a multiplicative series.

2.2.1 Time Series Smoothing

Smoothing is an important and widely adopted method to predict financial markets. Recent work on smoothing time series data has its origins in Brown (1959), Brown (1963), Holt (2004) and Winters (1960). Typically, the various smoothing techniques encountered are based around the concept of moving averages. This section will introduce a variety of smoothing methods commonly encountered in forecasting financial data.

2.2.1.1 Simple Moving Average (SMA)

A simple moving average is calculated from the value itself and its neighbours, which can be ahead or behind in the series. In this study values behind the current value are considered. The number of previous values included is often referred to as the “window” or “lag”, so if one was to consider the current value and four previous ones this would be considered a simple moving average of lag 5 (SMA5). An example of a simple moving average can be seen in Table 2.1, where a SMA5 of the closing price has been added.
Table 2.1: Example of a simple moving average of the closing price with a lag of 5 periods.

<table>
<thead>
<tr>
<th>Date</th>
<th>Open</th>
<th>High</th>
<th>Low</th>
<th>Close</th>
<th>SMA5</th>
</tr>
</thead>
<tbody>
<tr>
<td>02/01/14</td>
<td>9598</td>
<td>9621</td>
<td>9394</td>
<td>9400</td>
<td>NA</td>
</tr>
<tr>
<td>03/01/14</td>
<td>9410</td>
<td>9453</td>
<td>9368</td>
<td>9435</td>
<td>NA</td>
</tr>
<tr>
<td>06/01/14</td>
<td>9419</td>
<td>9469</td>
<td>9400</td>
<td>9428</td>
<td>NA</td>
</tr>
<tr>
<td>07/01/14</td>
<td>9446</td>
<td>9519</td>
<td>9417</td>
<td>9506</td>
<td>NA</td>
</tr>
<tr>
<td>08/01/14</td>
<td>9513</td>
<td>9516</td>
<td>9468</td>
<td>9498</td>
<td>9453</td>
</tr>
<tr>
<td>09/01/14</td>
<td>9492</td>
<td>9550</td>
<td>9403</td>
<td>9422</td>
<td>9458</td>
</tr>
<tr>
<td>10/01/14</td>
<td>9474</td>
<td>9530</td>
<td>9441</td>
<td>9473</td>
<td>9465</td>
</tr>
<tr>
<td>13/01/14</td>
<td>9498</td>
<td>9519</td>
<td>9457</td>
<td>9510</td>
<td>9482</td>
</tr>
</tbody>
</table>

2.2.1.2 Weighted Moving Average (WMA)

A simple moving average assigns equal importance to all data points being averaged, however if this is considered unsuitable a higher weighting can be applied to certain data points elevating their importance in the average and thus generating a weighted moving average (Stevens, 2002). Typically the more recent data points in a time series would be given higher importance. One common version of a WMA is to decrease the weighting by one for each period in the average. The formula for calculating a weighted moving average is:

\[
\frac{(n \cdot P_n) + (n - 1 \cdot P_{n-1}) + \ldots (n - (n - 1) \cdot P_{n-(n-1)})}{n + (n - 1) + \ldots n - (n - 1)}
\]

where:

n = the number of periods used in calculating the moving average
Pn = the price of the most recent period used to calculate the moving average

An extra column has been added to the data in Table 2.1 which contains the WMA for the last five close values. The current value was multiplied by 5, the previous one by 4, the previous one to that by 3 and so on. These five values were added together and divided by 5+4+3+2+1 to generate the WMA as shown in Table 2.2.

2.2.1.3 Exponential Moving Average (EMA)

An exponential moving average (EMA) is an extension of the weighted moving average (Ord, 2004). In comparison to the simple moving average, greater emphasis is given to the most recent data points and the resulting averaged values are closer to the actual
Table 2.2: Example of a weighted moving average.

<table>
<thead>
<tr>
<th>Date</th>
<th>Open</th>
<th>High</th>
<th>Low</th>
<th>Close</th>
<th>SMA5</th>
<th>WMA5</th>
</tr>
</thead>
<tbody>
<tr>
<td>02/01/14</td>
<td>9598</td>
<td>9621</td>
<td>9394</td>
<td>9400</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>03/01/14</td>
<td>9410</td>
<td>9453</td>
<td>9368</td>
<td>9435</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>06/01/14</td>
<td>9419</td>
<td>9469</td>
<td>9400</td>
<td>9428</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>07/01/14</td>
<td>9446</td>
<td>9519</td>
<td>9417</td>
<td>9506</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>08/01/14</td>
<td>9513</td>
<td>9516</td>
<td>9468</td>
<td>9498</td>
<td>9453</td>
<td>9471</td>
</tr>
<tr>
<td>09/01/14</td>
<td>9492</td>
<td>9550</td>
<td>9403</td>
<td>9422</td>
<td>9458</td>
<td>9461</td>
</tr>
<tr>
<td>10/01/14</td>
<td>9474</td>
<td>9530</td>
<td>9441</td>
<td>9473</td>
<td>9465</td>
<td>9466</td>
</tr>
<tr>
<td>13/01/14</td>
<td>9498</td>
<td>9519</td>
<td>9457</td>
<td>9510</td>
<td>9482</td>
<td>9481</td>
</tr>
</tbody>
</table>

observations of the data set. Weighting factors decay exponentially resulting in the emphasis falling on the recent values though not discarding the older ones totally.

2.2.1.4 Moving Averages in Practical Use

Moving averages are widely used in the financial world to predict the start of trends which is important as trends are considered the best opportunity to make profits from the markets. By their nature moving averages are lagged indicators in that they reflect market action from the past (recent or distant depending on the lag variable) and this can be considered a drawback. The lag period offers a trade off in terms of prediction. If the lag is short and/or weighting is applied the average is affected strongly by recent prices and trends can be detected in the early stages and trading profits can be enhanced. However when the average is close to the current price they have a tendency to generate “false signals” (see section 2.1.1 for an explanation of entry and exit signals), in other words prices may start to rise (or fall) but they are not actually in a trend, it is just the natural wax and wane of the market, and traders are said to be “whipsawed”. When the lag variable is long a different problem is encountered. For example, if a price moves above a long moving average the indicated trend is usually genuine, however by the time this is reflected in the average a lot of the trend has developed and the trader has lost a lot of potential profits. Thus there are pros and cons associated with using the different types of moving average.

2.2.1.5 Holt-Winters Smoothing Models

The exponential smoothing of a time series containing noise, trend and seasonality was developed by Winters (1960) who as a student of Holt, built upon his previous work, and is today called the Holt-Winters method. This method uses three parameters alpha, beta and gamma which define the degree of smoothing to be applied to the three components
of the time series. Firstly, a value of alpha is used to dictate the amount of smoothing to apply, with high smoothing factors placing more emphasis on recent data points at the expense of those further away. In a data set with trend this simple exponential moving average doesn’t perform well and a second order of smoothing is needed, so called “double exponential smoothing”. The parameter beta in Holt-Winters defines this second order smoothing. Finally, if a seasonal component is also present in the data set a third level of smoothing is introduced making the process a triple exponential smoothing. It is this third level of smoothing that the parameter gamma refers to. Depending upon the nature of the time series one, two or all three of the parameters may be defined in the Holt-Winters methodology.

If researching a time series with no seasonality or trend use of the Holt-Winters model with the beta and gamma parameters set to false, in other words not used, is appropriate. Figure 2.8 shows the addition of an exponential smoothing line to the stationary data set introduced in Figure 2.5.

![London Rainfall with Exponential Smoothing](image)

Figure 2.8: A time series with no seasonality or trend, showing the fitted line generated from Holt-Winters exponential smoothing with the beta and gamma parameters set to false.

If the time series is additive with a trend but without seasonality the use of Holt-Winters with values used for alpha and beta but with the gamma parameter set to false is appropriate. Such a time series can be seen in Figure 2.9 with the exponential smoothing. Finally if the time series contains all three components a smoothing line can be fitted using Holt-Winters exponential smoothing in which there are values for all three terms alpha, beta and gamma. Figure 2.10 is an example of a time series with both trend and seasonality and overlaid with Holt-Winters smoothing generated by using values for all three terms in the smoothing algorithm.
Figure 2.9: A time series with trend though no seasonality, showing the fitted Holt-Winters exponential smoothing with the gamma parameter set to false.

Figure 2.10: A time series with trend and seasonality, showing the fitted Holt-Winters exponential smoothing.

2.2.2 Auto-Regression Family of Models

2.2.2.1 Auto-Regression

Regression is the study of the impact of known variables (independent) on an unknown (dependent) variable and addresses questions such as how does a person’s income vary with their years of education. The general equation for linear regression is given by:

\[y = a + bx + \varepsilon \]
where:
\(a \) is the intercept.
\(b \) is the co-efficient.
\(x \) is the independent variable.
\(\varepsilon \) is the error term.

In reality there are often a large number of independent variables that affect the unknown under study and thus multiple regression, shown below, is usually of interest.

\[
y_1 = a + b_1x_{1i} + b_2x_{2i} + \ldots + b_nx_{ni} + \varepsilon
\]

In a time series the preceding values often have a bearing on the current data point, and this is especially important in financial time series data. Thus auto-regression is the prediction of the current point from the use of previous values of the data point itself, and is given by:

\[
t_t = c + b_1r_{t-1} + b_2r_{t-2} \ldots b_pr_{t-p} + \varepsilon
\]

where:
\(c \) is the intercept, is often zero and the mean of the time series.
\(b_1 \ldots b_p \) are the independent variables, the previous values.
\(\varepsilon \) is random noise.

2.2.3 Auto-Regressive Moving Average (ARMA)

The auto-regressive moving average (ARMA) model, also known as Box-Jenkins (Box and Jenkins, 1970), combines moving averages with auto-regression. A model that uses moving averages to predict current values is given by:

\[
-r_t = c + a_1*ma_{t-1} + a_2*ma_{t-2} \ldots a_q*ma_{t-q} + err_t
\]

ARMA combines the moving average model with auto-regressive terms to generate:

\[
 r(t) = c + b_1*r_{t-1} + b_2*r_{t-2} \ldots b_p*r_{t-p} + \\
 a_1*ma_{t-1} + a_2*ma_{t-2} \ldots a_q*ma_{t-q} + err
\]
where:

- c is the intercept, which is often zero and the mean of the time series.
- $b_1 - b_p$ are the independent variables, the previous values in the auto-regression term.
- $a_1 - a_p$ are parameters of the moving average model.
- ε is random noise.

An ARMA(1,1) model uses the previous value in the auto-regression term and the previous value’s moving average. Thus in general terms an ARMA(p,q) model uses the previous p values in the auto-regression term and the moving averages derived from the last q values. There are therefore three steps in developing an ARMA model:

1. identification step in which the order of AR and MA components is determined
2. parameter estimation
3. forecasting

ARMA models have certain intrinsic properties that may be considered drawbacks, namely the requirement for the time series to be stationary with no trend and also linear and the difficulty in deriving the correct parameters to use in the model. In order to overcome these restrictions researchers have tried a number of approaches to enhance the effectiveness of ARMA models.

The problem of model and parameter selection in ARMA models has also been addressed by Rojas et al. (2008). The authors make the point that in traditional research choosing the correct model is time consuming and requires a large degree of expertise. In order to circumvent these issues they propose an automatic model selection method to speed up the process, remove the need for expert intervention and allow the processing of a large number of time series. In a similar study Qian and Zhao (2007) investigate how to determine model selection where there are potentially millions of candidate ARMA models available for the time series. Again, the authors propose an automatic selection algorithm centred on the Gibbs sampler. The proposed method allows for various problems typically encountered in selecting ARMA models and the resulting choice was used to generate a prediction of China’s Consumer Price Index (CPI).

2.2.4 Auto-Regressive Integrated Moving Average (ARIMA)

One limitation with the ARMA model and indeed other approaches is that it is assumed that the time series is stationary, it doesn’t have trend and has constant variance and mean (Shumway and Stoffer, 2010). In reality of course many time series data sets have
trend, and in the world of financial data this is also true. In order to account for trend in a time series it is often transformed into a stationary data set, modelling is then performed on this adapted data after which it is returned to its original state. In effect the trend aspect is removed, modelling is done, then the trend component is added back into the data.

One such method for removing trend is differencing (Mills, 2011). Differencing is the technique of replacing the actual values of the observations with the values of the differences between them. This is represented as:

\[Diff_{1t} = r_t - r_{t-1} \]

Differencing is the same as calculating the derivative of the series, thus a time series that has under gone differencing is considered “integrated”. If taking this so-called first difference doesn’t remove the trend one can go further and use the second difference:

\[Diff_{2t} = (r_t - r_{t-1}) - (r_{t-1} - r_{t-2}) \]

Addition of an integration step to the ARMA model results in an auto-regressive integrated moving average (ARIMA) model, with the general formula:

\[
 r(t) = c + \sum_{i=1}^{p} b_i * r_{t-i} + \sum_{i=1}^{q} a_i * \text{ma}_{t-i} + \sum_{i=1}^{d} d_i \cdot \text{diff}_{t-i} + \text{err}
\]

where:

- \(c \) is the intercept, which is often zero and the mean of the time series.
- \(b_1 - b_p \) are the independent variables, the previous values in the auto-regression term.
- \(a_1 - a_p \) are parameters of the moving average model.
- \(d_1 - p \) are the parameters of the differencing term. \(\varepsilon \) is random noise.

ARIMA models are usually referenced as ARIMA(p,d,q) with \(p \) the number of terms used in the auto-regression, \(d \) the number of differencing terms and \(q \) the number of
terms used in the moving average. A summary of which model (Holt-Winters, ARMA or ARIMA) to use with which type of time series can be seen in Table 2.3.

Table 2.3: Appropriate models for use with time series data.

<table>
<thead>
<tr>
<th>Model</th>
<th>Time Series Required</th>
<th>Assumes Correlation</th>
<th>Trend</th>
<th>Seasonality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holt-Winters</td>
<td>Short Term</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>ARMA</td>
<td>Stationary</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>ARIMA</td>
<td>Non-stationary:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Additive or Multiplicative</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.2.5 ARIMA Parameter Selection

An important aspect of building time series models with ARIMA techniques is the choice of parameters to use. Auto-correlation (AC) and partial auto-correlation (PAC) are important measures in the selection process of these parameters (Mills, 2011).

Correlation is the measure of how one variable changes with a second one. For example if variable A increases while variable B increases they are positively correlated and conversely they are negatively correlated when one decreases as the other increases. Further, correlations are measured by degree on a scale of 1 to -1, with 1 being perfectly correlated. A value of 1 indicates that the two variables increase together perfectly in sync, whereas a value of -1 suggests that as one variable increases the other decreases by the same amount. Finally a value of 0 is indicative of no correlation at all between the two variables.

Auto-correlation is the correlation between an attributes value now and the same attribute’s value in the past or future (Shumway and Stoffer, 2010). Typically with financial data we are interested in the correlation with values in the past. The interval between the value of interest and the previous observation used in determining the correlation is known as the lag. Thus the correlation between the current observation and the previous one may be of interest, and this is a lag of +1, while a value five time intervals previous is +5. Non-intuitively positive values for lags refer to the past while negative values are in the future.

A correlogram is a matrix plot of auto-correlations over a series of time lags. Correlograms are used in checking data for randomness and in the model identification stage of the ARMA methodology (see section 2.2.3). Data is considered random if the autocorrelation value is close to zero. In general a data set’s randomness needs to be checked
in order to confirm the validity of many statistical tests. Thus a correlogram helps to
determine if data is random or if an observation is related to an earlier one, thereby
helping in the determination of an appropriate ARMA model. Figure 2.11 is the cor-
relogram of auto-correlation and Figure 2.12 the correlogram of partial auto-correlation
for a data set of rain fall figures.

![Figure 2.11: Correlogram of auto-correlations.](image1)

![Figure 2.12: Correlogram of partial auto-correlations.](image2)

The partial correlation is defined as the degree of correlation not already explained by
the correlations previously measured. If the regression of variable A on variables B1, B2
and B3 is considered the partial correlation between variables A and B3 is the degree
of correlation not accounted for by their common correlations with variables B1 and
B2. In a similar manner the partial autocorrelation is the unexplained correlation after
considering the variable and itself at an earlier time period. In a series, if a variable
A at time t is correlated with an earlier lag at time $t-1$ it follows that the variable at $t-1$ itself is correlated with the previous variable at lag $t-2$. By extension the variable at time t should also be correlated with the variable at lag $t-2$, as the correlation will propagate through the series. The partial autocorrelation is the difference the expected correlations due the propagating factors and the actual correlation measured.

If the ARIMA model is ARIMA($p,d,0$) or ARIMA($0,d,q$) then the ACF and PACF plots are helpful in deciding the values for p or q. If both p and q are positive, the ACF and PACF are not useful in estimating the values for p and q. An ARIMA($p,d,0$) model may be appropriate if the ACF and PACF plots of the stationary data exhibit an exponentially decaying pattern in the ACF and a large spike at lag p in PACF plot. Conversely an ARIMA($0,d,q$) model may be appropriate if the PACF is decaying exponentially and there is there is a significant spike in the ACF plot at lag q.

2.2.6 Hybrid Models

Auto-regressive (integrated) moving average models have shown themselves to be important modelling methods for time series data, including financial time series data. However the techniques have limitations that have detracted from their popularity, namely their assumption of a linear relationship and the need for a lot of data to produce accurate results. In order to address these limitations a variety of hybrid solutions have been proposed in which ARIMA models are combined with other techniques, often non-linear prediction algorithms (Wang et al., 2012, Khashei and Bijari, 2012, Aladag et al., 2009).

One combination that has found a lot of attention in the literature is the combination of Artificial Neural Networks (ANNs) with ARIMA. Khashei et al. (2009) report on the use of this combination in a attempt to predict the future price movement in gold and US dollar/Iran rials financial markets. The workers report favourable results in comparison to the techniques alone and suggest the method as having potential for accurate predictions of non-linear time series data. In a similar study Zhang (2003) applied a combination of ARIMA and ANN to various data sets including the British pound/US dollar exchange rate. They observe that in the literature in general these two popular techniques are frequently compared in terms of predictive power with the reported results non-conclusive. Results from the three data sets modelled show that the combination of the two methods outperform the individual ones when the mean squared error (MSE) and mean absolute deviation (MAD) are used as the measure of forecasting accuracy.

Fatima and Hussain (2008) also investigated the impact of a hybrid approach in modelling short term predictions for the Karachi Stock Exchange index (KSE100). The
authors reported comparison results for ANN versus ARIMA and a hybrid of AN-N/ARIMA. The hybrid solution out-performed the individual ARIMA and ANN models. It is postulated that a rationale for this is that at any point in time financial markets are subject to linear, non-linear and volatility patterns as the cumulative effects of government fiscal and monetary policies and general rumour and political instabilities feed into the market. Under these complex conditions simple models can only capture one aspect of the underlying factors affecting the price series. A hybrid combination approach is more successful as more of the market variance is modelled.

Kriechbaumer et al. (2014) reports on a further hybrid approach to forecast the prices of aluminium, copper, lead and zinc. Previous research has indicated that these markets exhibit a strong cyclic behaviour. In an attempt to factor this into the predictive model ARIMA was coupled with a wavelet approach. Wavelet analysis decomposes a time series into its frequency and time domains in an attempt to isolate this cyclic behaviour. The performance of the ARIMA modelling was shown to be enhanced substantially by the addition of wavelet based multi-resolution analysis (MRA) before performing the ARIMA analysis.

Tan et al. (2010) have also reported the combination of wavelet analysis and ARIMA in the prediction of electricity prices. The general method employed is to transform the original time series data set into a collection of sub-series through the application of wavelet analysis. Subsequent to the transformation a prediction for each sub-series can be made with ARIMA modelling. The final forecasted result is obtained by reforming the sub-series back into the original time series. The authors report results showing the enhanced predictive power of the ARIMA wavelet hybrid approach compared to ARIMA and GARCH models used in isolation.

Pai and Lin (2005) reported on attempts to overcome the limitation of ARIMA models in that the time series must be linear by use of an hybrid ARIMA/Support vector machine (SVM) combination. SVM have been successfully applied to non-linear regression problems and the authors have harnessed the strengths of both methodologies in order to predict the prices of a selection of fifty stocks. Results from the work show that the hybrid method out-performs the ARIMA and SVM methods individually.

Rout et al. (2014) report the use of ARMA models in the prediction of exchange rates. The workers note the limitations of ARMA in that the time series data must be linear and stationary, a condition often not met in practical situations and the difficulty in deriving steps one and two (listed previously) in developing the ARMA model. In order to overcome these limitations ARMA is combined with differential evolution (DE) in order to determine the models feed-forward and feed-back parameters. The results from the
prediction models generated are compared with models resulting from ARMA in conjunction with particle swarm optimisation (PSO), cat swarm optimisation (CSO), bacterial foraging optimization (BFO) and forward backward least mean square (FBLMS). The workers conclude that the ARMA - DE model produces the best short and long-range predictions from the options tested and is a potentially valuable method in predicting exchange rates on the international finance markets.
Chapter 3

Methodology

3.1 Data Collection and Quality

The data used in this study was freely collected from the Yahoo finance web site (www.yahoo.com). It is of high quality with no missing values and represents the opening, high, low and closing prices for each day that the particular market indice was open for trading.

3.2 Data Description

Data from a variety of national stock market indices was employed in this study. The indices were from a variety of geographic locations with FTSE (UK), DAX (Germany) and CAC (France) all being in Europe, the Dow is from the US, the Nikkei from Japan and AORD from Australia. Stock market indices are calculated from the combined price movements within a group of shares, with the best known examples being calculated from companies with large market valuations. The indices used in this study were:

- FTSE - also referred to as the FTSE 100, these are the largest 100 companies by market capitalisation on the London Stock Exchange.

- DAX - an index of the 30 primary companies trading on the Frankfurt Stock Exchange.

- CAC - the most widely used French index containing the 40 largest stocks on the Euronext Paris (formerly the Paris Bourse), including companies such as L’Oreal and Renault.
• Dow - also known as the Dow Jones Industrial Average is an index of 30 large publicly owned companies in the US, and reflects how they have traded in a standard trading session on the New York Stock Exchange.

• Nikkei - also known as the Nikkei 225, it is the most widely quoted index for Japanese stocks traded on the Tokyo Stock Exchange.

• AORD - also known as the All Ordinaries Index, it consists of the 500 largest companies by market capitalisation on the on the Australian Securities Exchange.

The data is in the form of so-called daily OHLC (daily open, high, low and close prices) for Monday to Friday (excluding appropriate national holidays) for the period 2000 until the end of 2013. A schematic representation of daily OHLC data can be seen in Figure 3.1. The first six observations from the DAX data set (German national indice) can be seen in Table 3.1.

![Figure 3.1: A schematic representation of open, high, low and closing prices (OHLC).](image)

The final six observations from the DAX data set can be seen in Table 3.2. Over the period of the data (2000 until the end of 2013) the DAX started at 6691 and finished at 9552. Summary statistics for the DAX data set can be seen in Table 3.3. The data set contains 3621 observations and the closing price has ranged between 2202 and 9742 over the period. A graph of the closing prices from 2000 to 2013 and be seen in Figure 3.2 and a graph for 2013 can be seen in Figure 3.3.

Each data set has a particular set of characteristics and these are important when technical analysis and other analytical techniques are applied to the data set (Chen and Li, 2014, Matheson, 2012). A variety of these are explored in the following sections. The average amount a market moves is investigated and the term Average True Range is introduced and defined for the data sets. Where the opening and closing prices are in relation to the previous day’s high and low values are also considered. Finally, the
Figure 3.2: Graph of German DAX between 2000 and 2013.

Figure 3.3: Graph of German DAX in 2013.
distance between the day’s opening and high prices and opening to low prices are investigated. The relative ratios of these values are important when considering which technical analysis may be best suited to a particular market.

3.2.1 Average True Range (ATR)

Wilder (1978) introduced the concept of Average True Range (ATR) as a way to measure a market’s volatility or the amount the price is likely to move in any one day. Initially the True Range (TR) is calculated as the maximum of:

1. the today’s high price minus today’s low price.
2. the absolute value of the today’s high minus the previous day’s closing price.
3. the absolute value of the today’s low minus the previous day’s closing price.
Having calculated the TR, an average of a previous number of days is used to derive the ATR. Typically the TR values from the previous 14 days are used.

Absolute values are used in the calculation of the ATR as we are not concerned with the market direction but rather the amount the market is likely to move. ATRs are typically quoted as absolute values and as such markets trading at higher prices will have higher ATRs. For example the Japanese Nikkei with a value of 14000 will move more in a day than the French CAC with a value in the 4000’s.

Dividing the ATR by the closing price is a useful way to see how a security’s volatility varies over time. Table 3.4 shows summary statistics for the ATR and ATR divided by closing price and Figure 3.4 is a graph of how ATR divided by closing price has varied for the DAX between 2000 and 2013. In absolute terms the ATR varied between 36 and 316, however the value of the indice itself varied a lot. Looking at the ATR value divided by the closing period it can be seen that over the period of 2000 to 2014 the mean value is approximately 2. Thus on average the market can be expected to move 2% of the closing price in any one day. However this value has varied between 0.7% in periods of low volatility to a value of 6.7%.

Table 3.4: ATR and ATR divided by closing price for the DAX between 2000 and 2013

<table>
<thead>
<tr>
<th>Statistic</th>
<th>N</th>
<th>Mean</th>
<th>St. Dev</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATR</td>
<td>3,556</td>
<td>108.29</td>
<td>45.53</td>
<td>36.07</td>
<td>316.04</td>
</tr>
<tr>
<td>ATR/Close</td>
<td>3,556</td>
<td>1.995</td>
<td>1.065</td>
<td>0.700</td>
<td>6.740</td>
</tr>
</tbody>
</table>

Figure 3.4: ATR of DAX divided by closing price between 2000 and 2013.
Chapter 3. Methodology

3.2.2 Opening Price

Where a market opens in relation to the previous day’s high and low price varies across the data sets. This is important and can influence the technical analysis indicator or trading system to utilise. Table 3.5 lists opening price statistics for a variety of national indices. The table lists the number of times that opening prices are between the previous day’s high and low prices. These statistics are useful in characterising a market in terms how they move out of hours and can have an impact when choosing a trading system.

Table 3.5: Opening prices in relation to the previous day’s high and low values.

<table>
<thead>
<tr>
<th>Market</th>
<th>Opening Price between Previous Day’s High and Low (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>75</td>
</tr>
<tr>
<td>FTSE</td>
<td>90</td>
</tr>
<tr>
<td>CAC</td>
<td>60</td>
</tr>
<tr>
<td>Dow</td>
<td>98</td>
</tr>
<tr>
<td>Nikkei</td>
<td>53</td>
</tr>
<tr>
<td>AORD</td>
<td>79</td>
</tr>
</tbody>
</table>

3.2.3 Closing Price

In a similar fashion to the opening prices the position of the closing prices in relation to the previous day’s high and low price are also of interest. In this case, the percentage of closes outside the previous high/low price may indicate that the market may be a good choice for a breakout type of trading system (see section 4.6.1 for details of breakout systems). Likewise the opposite situation occurs if a market frequently finishes within the previous day’s high and low levels and may be a candidate for a reversal type of system. The statistics for various national indices can be seen in Table 3.6. Looking at these figures it would suggest that the Dow with a low ratio of finishing outside the previous period’s high low values may be a candidate for a reversal type of system and conversely the Japanese Nikkei has a high percentage value and potentially a candidate for a breakout system.

The range from opening price to closing price, either up or down, is of interest. Table 3.7 lists the minimum and maximum values in this range and Table 3.8 shows the quantiles for this price range.
Table 3.6: Number of occasions when closing prices finished outside the previous day’s high or low values.

<table>
<thead>
<tr>
<th>Market</th>
<th>Closing Price outside Previous Day’s High and Low (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>56</td>
</tr>
<tr>
<td>FTSE</td>
<td>56</td>
</tr>
<tr>
<td>CAC</td>
<td>58</td>
</tr>
<tr>
<td>Dow</td>
<td>39</td>
</tr>
<tr>
<td>Nikkei</td>
<td>63</td>
</tr>
<tr>
<td>AORD</td>
<td>60</td>
</tr>
</tbody>
</table>

Table 3.7: Minimum and maximum values for the open to close price range.

<table>
<thead>
<tr>
<th>Market</th>
<th>Min Value</th>
<th>Max Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>0</td>
<td>508</td>
</tr>
<tr>
<td>FTSE</td>
<td>0</td>
<td>431</td>
</tr>
<tr>
<td>CAC</td>
<td>0</td>
<td>313</td>
</tr>
<tr>
<td>Dow</td>
<td>0</td>
<td>950</td>
</tr>
<tr>
<td>Nikkei</td>
<td>0</td>
<td>1333</td>
</tr>
<tr>
<td>AORD</td>
<td>0</td>
<td>347</td>
</tr>
</tbody>
</table>

Table 3.8: Quantile values for the open to close price range.

<table>
<thead>
<tr>
<th>Market</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
<th>90%</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>16</td>
<td>39</td>
<td>75</td>
<td>508</td>
</tr>
<tr>
<td>FTSE</td>
<td>15</td>
<td>33</td>
<td>63</td>
<td>431</td>
</tr>
<tr>
<td>CAC</td>
<td>11</td>
<td>26</td>
<td>49</td>
<td>313</td>
</tr>
<tr>
<td>Dow</td>
<td>27</td>
<td>61</td>
<td>119</td>
<td>950</td>
</tr>
<tr>
<td>Nikkei</td>
<td>32</td>
<td>71</td>
<td>133</td>
<td>1333</td>
</tr>
<tr>
<td>AORD</td>
<td>8</td>
<td>19</td>
<td>36</td>
<td>347</td>
</tr>
</tbody>
</table>

3.2.4 High/Low Price

Table 3.9 shows the percentage of times that either today’s high price crosses yesterday’s high or today’s low prices dips below yesterday’s low value. The final closing price may be between yesterday’s high and low or outside of it. The second column of Table 3.9 is the number of times when today’s values crossed both the previous low and the previous high in the same day. This is also known as an Engulfing Candlestick (see section 4.7.2). In all the indices the previous day’s high or low value is reached the following day in a large number of instances, in the case of the Nikkei 90% of the time. Conversely, the likelihood of both the previous day’s high and low values being touched are low, only 5% of occasions in the Australian AORD.
Table 3.9: Number of occasions when today’s high or low prices crossed the previous
day’s high or low values.

<table>
<thead>
<tr>
<th>Market</th>
<th>Crosses either previous day’s High or Low (%)</th>
<th>Crosses both the previous day’s High and Low (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>89</td>
<td>9</td>
</tr>
<tr>
<td>FTSE</td>
<td>87</td>
<td>8</td>
</tr>
<tr>
<td>CAC</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>Dow</td>
<td>88</td>
<td>9</td>
</tr>
<tr>
<td>Nikkei</td>
<td>90</td>
<td>8</td>
</tr>
<tr>
<td>AORD</td>
<td>86</td>
<td>5</td>
</tr>
</tbody>
</table>

3.2.5 OH/OL Price Fluctuations

The movements in prices between the open and high (OH) and open to low (OL) are interesting and can have an influence on any trading systems developed. On any given day prices open, move to their lowest point, move to their highest point and then close (not in any particular order). From the OHLC data used in this study the order of these events can not be determined or even the number of times in a day these price points are reached.

In this section we are concerned with the relative sizes of these two price movements, the day’s high price minus the opening price (OH) and the opening price minus the low price (OL), one of which is usually greater than the other. We will define the daily “minor” price fluctuation as the smaller of the two price movements. Likewise we will define the larger value as the “major” price fluctuation.

Considering the minor price fluctuation, the range of values encountered in the indice markets under study can be seen in Table 3.10. In all cases the minimum value is zero, in other words the market opening price and either the day’s high or low price were the same, the market didn’t dip below or above this level. The second column in Table 3.10 is the maximum value. In the case of the German DAX, there was a day when the market moved 189 points away from its opening price but also moved further in the opposite direction away from the opening price. Clearly this was a highly volatile day on the German markets.

The quantiles of the minor price movements can be seen in Table 3.11. The 90% quantile is the level at which 90% of the time the minor move is less than this level. This value may be important to know and understand when considering breakout type of systems (see section 4.6). Looking at the value of the DAX we can see that the 90% quantile level occurs at 46, which indicates that if the market has moved to this level it is unlikely to be the day’s minor move (whose level 90% of the time is below this). Perhaps a breakout
Table 3.10: Minimum and maximum values for the smaller of the daily OH or OL price movement - the “minor” move.

<table>
<thead>
<tr>
<th>Market</th>
<th>Min Value</th>
<th>Max Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>0</td>
<td>189</td>
</tr>
<tr>
<td>FTSE</td>
<td>0</td>
<td>186</td>
</tr>
<tr>
<td>CAC</td>
<td>0</td>
<td>134</td>
</tr>
<tr>
<td>Dow</td>
<td>0</td>
<td>379</td>
</tr>
<tr>
<td>Nikkei</td>
<td>0</td>
<td>310</td>
</tr>
<tr>
<td>AORD</td>
<td>0</td>
<td>114</td>
</tr>
</tbody>
</table>

type of system may be profitable at this point, as once the market has moved this far it is usually a major move and may be expected to continue further in the same direction.

Table 3.11: Quantile values for the smaller of the days OH or OL price movement - the “minor” move.

<table>
<thead>
<tr>
<th>Market</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
<th>90%</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>5</td>
<td>15</td>
<td>29</td>
<td>46</td>
</tr>
<tr>
<td>FTSE</td>
<td>0</td>
<td>7</td>
<td>20</td>
<td>33</td>
</tr>
<tr>
<td>CAC</td>
<td>4</td>
<td>11</td>
<td>19</td>
<td>31</td>
</tr>
<tr>
<td>Dow</td>
<td>12</td>
<td>43</td>
<td>75</td>
<td>113</td>
</tr>
<tr>
<td>Nikkei</td>
<td>5</td>
<td>21</td>
<td>43</td>
<td>72</td>
</tr>
<tr>
<td>AORD</td>
<td>0</td>
<td>1</td>
<td>7</td>
<td>13</td>
</tr>
</tbody>
</table>

In contrast to the minor daily price fluctuation, the “major” price fluctuation is defined as the largest of the OH or OL values. The range of values encountered in this price fluctuation in the indice markets can be seen in Table 3.12 and the quantiles of the major price movements can be seen in Table 3.13. Considering the DAX once more, it can be seen that the 25% quantile is approximately equal to the 90% quantile of the minor fluctuation. Thus if the DAX moves approximately 50 points away from the opening it is unlikely to be the smaller of the price movements and much more likely to be part of the larger movement. Knowledge of the minor and major price fluctuations may be useful in developing trading systems.

Table 3.12: Minimum and maximum values for the larger of the days OH or OL price movement - the “major” daily price fluctuation.

<table>
<thead>
<tr>
<th>Market</th>
<th>Min Value</th>
<th>Max Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>0</td>
<td>530</td>
</tr>
<tr>
<td>FTSE</td>
<td>0</td>
<td>471</td>
</tr>
<tr>
<td>CAC</td>
<td>0</td>
<td>359</td>
</tr>
<tr>
<td>Dow</td>
<td>0</td>
<td>992</td>
</tr>
<tr>
<td>Nikkei</td>
<td>0</td>
<td>1737</td>
</tr>
<tr>
<td>AORD</td>
<td>0</td>
<td>347</td>
</tr>
</tbody>
</table>
Table 3.13: Quantile levels for the larger of the day’s OH or OL price movement - the “major” daily price fluctuation.

<table>
<thead>
<tr>
<th>Market</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>43</td>
<td>69</td>
<td>106</td>
</tr>
<tr>
<td>FTSE</td>
<td>37</td>
<td>56</td>
<td>86</td>
</tr>
<tr>
<td>CAC</td>
<td>30</td>
<td>45</td>
<td>69</td>
</tr>
<tr>
<td>Dow</td>
<td>92</td>
<td>131</td>
<td>190</td>
</tr>
<tr>
<td>Nikkei</td>
<td>76</td>
<td>118</td>
<td>184</td>
</tr>
<tr>
<td>AORD</td>
<td>18</td>
<td>30</td>
<td>48</td>
</tr>
</tbody>
</table>

A final consideration in this section is the range of the open to close prices detailed in section 3.2.3. Again considering the German DAX it can be seen that the 50% quantile value is 39, as shown in Table 3.8, which is below the 90% minor fluctuation level.

3.3 Software Tools

3.3.1 R and R Studio

Experimental results and graphs were produced with the open source programming language R version 3.0.2. For help in the creation and organisation of the R code for this thesis the open-source development environment R Studio version 0.98.490 was used extensively. The following packages were immensely helpful in the preparation of this thesis:

- TTR - provided technical analysis functions
- xts - irregularly spaced time series
- forecast - time series forecasting
- candlestick - Japanese candlestick patterns

3.3.2 Rapid Miner

Rapid Miner version 5.3, a market leading open-source data mining and predictive analytic platform, was used for building hybrid ARIMA models. The base system and time series plug-ins were used.
3.4 Methodology

The aim of this study was to predict market movement, not in terms of absolute values but more in terms of general direction. The trading algorithms developed in this study were based around a daily time period. The data used was daily data containing open, high, low and closing prices. The trading algorithms developed typically opened a trade at the day’s opening price and closed them at the day’s closing prices. There are some deviations from this, for example trades are closed at some pre-defined point in the event of a stop loss being entered or trades running from close to close, and these are detailed in the text at the appropriate place.

Prior to passing the data sets to the trading algorithms they were subjected to either technical or time series analysis. Typically technical analysis results in the generation of a value (for example a moving average or stochastic value) which is considered meaningful in the future prediction of the financial market. The forecasts produced from the technical analysis and time series models were consumed by the trading algorithms and used to decide in which direction the daily trade would be made, i.e. would the market rise or fall.

The success or failure of any particular method was determined by the number of points gained or lost in these trading algorithms. In turn these points can be considered money and the net number of points can represent a profit or loss (PL). The results presented in Chapters 4 and 5 report either the total PL of a system or the average PL per trade. The latter value is probably most useful when it comes to comparing systems that don’t enter trades every day, for example when one uses candlestick patterns which only occur very infrequently. Also the direction of trade is also a consideration. Results are separated into long (a buy is made in the expectation of the market rising) or short (a sell is made in the expectation of the market falling).
Chapter 4

Technical Analysis

4.1 Introduction

This chapter investigates whether technical analysis can provide a positive expectancy for financial traders (Kuang et al., 2014, Hsu et al., 2010). A variety of technical analysis indicators are employed including MACD, Aroon, Stochastics Oscillator and Rate of Change (ROC) indicator. The experimental results from using these indicators are presented in groupings based on the general category of indicator such as trend identification, market reversal and momentum indicators (Taylor, 2014). Some technical indicators have a role to play in more than one area, for example MACD can be considered a trend detection indicator or a market reversal indicator.

The effectiveness of a particular indicator or system is measured in terms of “points” gained, which is also referred to as “PL” (which stands for profit and loss). The results presented in this chapter are mainly based around systems in which a trade is opened and closed each day, producing a daily PL either positive or negative. The sum of all the individual days produces the total system PL and these values are reported in the results tables. For example, if the market moved from 6000 to 6200 in any one day a PL of either 200 (6200 - 6000) or -200 (6000 - 6200) depending upon which way the trade was placed, would be added to the overall system results.

In addition, the results are presented such that returns from “going long” (expecting the market to rise) are presented separately from the opposite scenario of “going short”. This is because market behaviour is often different while it is rising than it is while falling and systems may be more adept at predicting price movements in one of the directions. Further, transactions costs are not taken into account in the results and these would typically be 1 point per trade for the European markets, 2 points for the Dow and 10 for
the Nikkei. Thus if a system made a PL of 1000 but it required 2000 trades at 2 points per trade, in reality the system would have lost money.

The results presented in this chapter and the following one are based around trading systems. Essentially the methodology concerned, technical analysis in this chapter and time series analysis in the next, attempt to predict future market direction. The values from the various indicators and forecast techniques are fed into a variety of trading algorithms which use the forecast information to decide whether to make long (expect the market to rise) or short (expect the market to fall) trades. For consistency the algorithms all return the same data object containing the following results:

1. Mkt - the name of the financial market such as DAX, FTSE etc.
2. S Loss - the value of any stop loss applied
3. LongPL - the profit or loss generated from just the “Long” trades.
4. ShortPL - the profit or loss generated from just the “Short” trades.
5. L Win % - the percentage of time the Long trades win.
6. L Trades - the number of Long trades executed.
7. Av L PL - the average profit or loss generated from each Long trade.
8. S Win % - the percentage of time the Short trades win.
9. S Trades - the number of Short trades executed.
10. Av S PL - the average profit or loss generated from each Short trade.
11. misc - miscellaneous information such as the SMA used in the algorithm.

The results from Long and Short trades in particular trading algorithm are considered separately as frequently markets behave differently as they move up as opposed to as they fall. Further, the percentage of times the algorithm results in winning trades, the number of trades and the average profit or loss (PL) for each trade is reported for both Long and Short trades. The average PL is primarily reported in the following results tables because this allows comparisons between systems that generate a lot of trades with those such as the algorithms based on candlestick patterns that results in only a small number of trades.
4.2 Baseline Systems - Naive Methods

Initially two very simple ideas were explored in order for the results to be used as baselines against which the technical indicators explored in the rest of the chapter and the time series models of Chapter 5 can be compared. There is an expectation that the use of technical indicators will produce systems that provide much better results than these two so-called naive systems.

The first system simply uses the idea that markets tend to increase in value over time. The algorithm applies a naive approach and simply enters a trade each day expecting the market to rise. The well-known method of "Buy and Hold" applies the same principles. The total PL of the resulting system is the sum of all the daily close minus open prices. This approach has been named a “Naive Long System”.

The second approach is equally simplistic, and again is based around opening and closing a trade each day. A notable difference from the first naive system is that the algorithm can result in either a buy or a sell (expecting the market to decline in value) occurring. If a market increased in price the previous day the algorithm “reverses” it and expects the market to fall today. Likewise if the market had fallen the previous day the system buys the market today. This idea has been named the “Naive Reversing System”.

4.2.1 Naive Long System

The results of the naive long system can be seen in Table 4.1. The R code for the algorithm which generates the results shown in Table 4.1 can be seen in Appendix A section A.1.2.1. For comparison purposes, the opening prices of the indices in January 2000 along with the closing prices in 2013 can be seen in Table 4.2. In this period three of the indices increased in value (DAX, Dow and AORD) and three decreased (FTSE, CAC and Nikkei).

Interestingly, the PL produced from the Naive Long System doesn’t match the price differentials seen in Table 4.2. The German DAX indice produced a marked loss in the naive system even though it actually increased 37% during this period. The Japanese Nikkei declined by over 2600 points in this period, whereas the system reported a loss of over 18000 points in the same period. On the other hand the US Dow increased by around 5000 points during the period of the study but the trading algorithm produced a positive result of almost 10000. These discrepancies can be explained by the fact that the system was using prices from the market’s opening to closing times, which represents approximately eight hours of trading between 8am and 4pm local time. These price movements don’t account for the rest of the hours, the so-called out of market hours,
when the market prices also change. Clearly the markets show different characteristics in the amount they move during market hours compared to out of market hours. The Nikkei, DAX and CAC have a tendency to fall during market hours and rise during out of market hours. The opposite situation occurs for the Dow.

Table 4.1: Naive Long System. A very simple system in which the algorithm assumes the market will rise and enters a long trade each day.

<table>
<thead>
<tr>
<th>Mkt</th>
<th>LongPL</th>
<th>L Win %</th>
<th>Av L PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>-1714</td>
<td>52</td>
<td>0</td>
</tr>
<tr>
<td>CAC</td>
<td>-6725</td>
<td>50</td>
<td>-2</td>
</tr>
<tr>
<td>FTSE</td>
<td>149</td>
<td>51</td>
<td>0</td>
</tr>
<tr>
<td>Dow</td>
<td>9816</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>Nikkei</td>
<td>-18125</td>
<td>49</td>
<td>-5</td>
</tr>
<tr>
<td>AORD</td>
<td>972</td>
<td>52</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 4.2: Prices of six national indices in January 2000 and December 2013.

<table>
<thead>
<tr>
<th>Date</th>
<th>Start 2000</th>
<th>End 2013</th>
<th>Difference</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>6961</td>
<td>9552</td>
<td>+2591</td>
<td>+37</td>
</tr>
<tr>
<td>CAC</td>
<td>6024</td>
<td>4250</td>
<td>-1774</td>
<td>-29</td>
</tr>
<tr>
<td>FTSE</td>
<td>6930</td>
<td>6749</td>
<td>-181</td>
<td>+3</td>
</tr>
<tr>
<td>Dow</td>
<td>11501</td>
<td>16576</td>
<td>+5075</td>
<td>+44</td>
</tr>
<tr>
<td>Nikkei</td>
<td>18937</td>
<td>16291</td>
<td>-2646</td>
<td>-14</td>
</tr>
<tr>
<td>AORD</td>
<td>3152</td>
<td>5353</td>
<td>+2201</td>
<td>+70</td>
</tr>
</tbody>
</table>

Altering the algorithm slightly so that a trade represents the difference between the previous closing price and today’s closing price affects the results markedly. A full 24 hour period is now accounted for and the system reflects the overall market movement during this period. These results can be seen in Table 4.3 and the amended R code can be seen in Appendix A section A.1.2.2.

Table 4.3: Naive Long System changed such that the trading period is the previous close price minus today’s close.

<table>
<thead>
<tr>
<th>Mkt</th>
<th>LongPL</th>
<th>L Win %</th>
<th>Av L PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>2649</td>
<td>53</td>
<td>1</td>
</tr>
<tr>
<td>CAC</td>
<td>-1667</td>
<td>51</td>
<td>0</td>
</tr>
<tr>
<td>FTSE</td>
<td>86</td>
<td>51</td>
<td>0</td>
</tr>
<tr>
<td>Dow</td>
<td>5219</td>
<td>53</td>
<td>1</td>
</tr>
<tr>
<td>Nikkei</td>
<td>-2712</td>
<td>51</td>
<td>-1</td>
</tr>
<tr>
<td>AORD</td>
<td>2229</td>
<td>53</td>
<td>1</td>
</tr>
</tbody>
</table>
4.2.2 Naive Reversing System

The second naive method is to reverse the previous day’s movement. For example, if the market closed up the previous day the algorithm follows this by trading short for the current day (the R code for this algorithm can be see in Appendix A section A.1.2.3). The results from this system can be seen in Table 4.4.

Table 4.4: Results from a naive trading system which simply trades in the opposite direction to the previous day’s movement.

<table>
<thead>
<tr>
<th>Mkt</th>
<th>LongPL</th>
<th>ShortPL</th>
<th>L Win %</th>
<th>Av L PL</th>
<th>S Win %</th>
<th>Av S PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>947</td>
<td>3131</td>
<td>53</td>
<td>1</td>
<td>49</td>
<td>2</td>
</tr>
<tr>
<td>CAC</td>
<td>940</td>
<td>7810</td>
<td>53</td>
<td>1</td>
<td>53</td>
<td>4</td>
</tr>
<tr>
<td>FTSE</td>
<td>4284</td>
<td>4115</td>
<td>53</td>
<td>3</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>Dow</td>
<td>15799</td>
<td>6047</td>
<td>56</td>
<td>10</td>
<td>49</td>
<td>3</td>
</tr>
<tr>
<td>Nikkei</td>
<td>2324</td>
<td>20486</td>
<td>51</td>
<td>1</td>
<td>54</td>
<td>12</td>
</tr>
<tr>
<td>AORD</td>
<td>1264</td>
<td>237</td>
<td>53</td>
<td>1</td>
<td>48</td>
<td>0</td>
</tr>
</tbody>
</table>

For all the markets tested, this second naive system produces positive results especially for the Nikkei and CAC trading short and the Dow trading long. These results demonstrate that markets have a tendency to reverse direction each day, they move up one day then down the next. This behaviour is also observed in trending markets, and market “pull-backs” are a well-known phenomena.

4.2.3 Summary of Naive Baseline Systems

Of the two naive systems tested, the “reversing” methodology produces the best results in terms of profit and loss by quite a margin. Thus the results from the “Naive Reversing System” will be used to compare the performance of technical indicators being tested in the following sections.

4.3 Trend Detection Indicators

One of the most widely used phrases in financial trading is “the trend is your friend”. Thus, most market participants are interested in identifying the start of trends, their direction and strength. In this section a variety of technical indicators that purport to assist in this important task are tested.
4.3.1 Simple Moving Average (SMA) System

One of the most popular and widely utilised technical indicators is the simple moving average (as detailed in Chapter 2 section 2.2.1.1). The effectiveness of SMA as an aid to predicting future market movements has been widely debated, with views mixed. A system based on simple moving averages is presented here, and the R code used to generate the results can be seen in Appendix A section A.1.3.1. The algorithm trades daily, opening and closing a trade each day. If the market opens above the SMA the algorithm trades long and trades short when the market opens below the SMA.

Table 4.5 lists the results from passing a variety of national index data sets (see Chapter 3 for details) to the algorithm. For each indice the algorithm is run with values of 5, 25, 50, 100 and 200 for the SMA period. In general the results are poor, especially after consideration is given to any transaction costs. The CAC and Nikkei produce negative results for long trades, the FTSE negative results across the board, and the Dow negative returns on the short side.

One aspect of a trading system of this nature worth considering is the risk/reward profile. As written in its current form the SMA algorithm has an unlimited profit potential (trades are left to run until the end of the day) and an unlimited potential loss for the same reason. Often traders employ what is known as a “stop loss”. This is a level in the market that if reached during a trade will cause the trade to close. The risk is now therefore reduced to this value while the profit is still potentially uncapped. Table 4.6 lists the results of using a stop loss with the SMA system.

The logic of the stop loss was coded as follows. Considering a long trade (the opposite holds true for trading short), where there is an expectation that the market will rise, a the stop loss would be triggered if the market fell to a certain level. Thus in the algorithm for a long trade the distance from the opening price to the low is calculated and this is compared to the stop loss value. If the open to low value exceeds the stop loss value the PL for this particular trade is set at the stop loss value, for example a loss of 100 points. One point of note is the fact that after hitting this low level the market may well recover and move upwards as originally expected. In many cases a trade that ultimately would have been profitable may be “stopped out” by the natural wax and wane of the markets. Therefore the impact of a stop loss is the balance between lost good trades and the reduction in the lost PL from losing trades. The size of the stop loss determines the impact of the two competing situations.

Figure 4.1 shows the situation in which a stop loss is beneficial. The potential large loss is reduced to the value of the stop loss value. Figure 4.2 illustrates the alternative scenario of being “Stopped Out” of an ultimately winning trade, an undesirable outcome.
Table 4.5: Results from a system based on SMA.

<table>
<thead>
<tr>
<th>Mkt</th>
<th>LongPL</th>
<th>ShortPL</th>
<th>L Win %</th>
<th>Av L PL</th>
<th>S Win %</th>
<th>Av S PL</th>
<th>SMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>2113</td>
<td>3278</td>
<td>54</td>
<td>1</td>
<td>50</td>
<td>2</td>
<td>SMA 5</td>
</tr>
<tr>
<td>DAX</td>
<td>1367</td>
<td>3427</td>
<td>54</td>
<td>1</td>
<td>50</td>
<td>2</td>
<td>SMA 25</td>
</tr>
<tr>
<td>DAX</td>
<td>779</td>
<td>3447</td>
<td>54</td>
<td>0</td>
<td>51</td>
<td>3</td>
<td>SMA 50</td>
</tr>
<tr>
<td>DAX</td>
<td>714</td>
<td>2393</td>
<td>54</td>
<td>0</td>
<td>51</td>
<td>2</td>
<td>SMA 100</td>
</tr>
<tr>
<td>DAX</td>
<td>3401</td>
<td>4416</td>
<td>55</td>
<td>2</td>
<td>52</td>
<td>4</td>
<td>SMA 200</td>
</tr>
<tr>
<td>CAC</td>
<td>-3952</td>
<td>2338</td>
<td>49</td>
<td>-2</td>
<td>49</td>
<td>1</td>
<td>SMA 5</td>
</tr>
<tr>
<td>CAC</td>
<td>-5058</td>
<td>1615</td>
<td>49</td>
<td>-2</td>
<td>49</td>
<td>1</td>
<td>SMA 25</td>
</tr>
<tr>
<td>CAC</td>
<td>-5323</td>
<td>1029</td>
<td>49</td>
<td>-3</td>
<td>49</td>
<td>1</td>
<td>SMA 5</td>
</tr>
<tr>
<td>CAC</td>
<td>-2363</td>
<td>3188</td>
<td>50</td>
<td>-1</td>
<td>50</td>
<td>2</td>
<td>SMA 100</td>
</tr>
<tr>
<td>CAC</td>
<td>-1219</td>
<td>3923</td>
<td>50</td>
<td>-1</td>
<td>50</td>
<td>3</td>
<td>SMA 200</td>
</tr>
<tr>
<td>FTSE</td>
<td>-4724</td>
<td>-5331</td>
<td>49</td>
<td>-2</td>
<td>46</td>
<td>-3</td>
<td>SMA 5</td>
</tr>
<tr>
<td>FTSE</td>
<td>-1013</td>
<td>-1940</td>
<td>51</td>
<td>0</td>
<td>47</td>
<td>-1</td>
<td>SMA 25</td>
</tr>
<tr>
<td>FTSE</td>
<td>-2226</td>
<td>-2769</td>
<td>50</td>
<td>-1</td>
<td>47</td>
<td>-2</td>
<td>SMA 5</td>
</tr>
<tr>
<td>FTSE</td>
<td>-889</td>
<td>-1692</td>
<td>51</td>
<td>0</td>
<td>48</td>
<td>-1</td>
<td>SMA 100</td>
</tr>
<tr>
<td>FTSE</td>
<td>-158</td>
<td>-835</td>
<td>52</td>
<td>0</td>
<td>49</td>
<td>-1</td>
<td>SMA 200</td>
</tr>
<tr>
<td>Dow</td>
<td>408</td>
<td>-9630</td>
<td>52</td>
<td>0</td>
<td>46</td>
<td>-6</td>
<td>SMA 5</td>
</tr>
<tr>
<td>Dow</td>
<td>1138</td>
<td>-9204</td>
<td>53</td>
<td>1</td>
<td>46</td>
<td>-7</td>
<td>SMA 25</td>
</tr>
<tr>
<td>Dow</td>
<td>5478</td>
<td>-5876</td>
<td>53</td>
<td>3</td>
<td>47</td>
<td>-4</td>
<td>SMA 50</td>
</tr>
<tr>
<td>Dow</td>
<td>2576</td>
<td>-8220</td>
<td>53</td>
<td>1</td>
<td>47</td>
<td>-6</td>
<td>SMA 100</td>
</tr>
<tr>
<td>Dow</td>
<td>6378</td>
<td>-4567</td>
<td>54</td>
<td>3</td>
<td>48</td>
<td>-4</td>
<td>SMA 200</td>
</tr>
<tr>
<td>Nikkei</td>
<td>3078</td>
<td>20401</td>
<td>51</td>
<td>2</td>
<td>54</td>
<td>13</td>
<td>SMA 5</td>
</tr>
<tr>
<td>Nikkei</td>
<td>-7878</td>
<td>10770</td>
<td>48</td>
<td>-4</td>
<td>52</td>
<td>7</td>
<td>SMA 25</td>
</tr>
<tr>
<td>Nikkei</td>
<td>-6054</td>
<td>11408</td>
<td>49</td>
<td>-4</td>
<td>52</td>
<td>7</td>
<td>SMA 50</td>
</tr>
<tr>
<td>Nikkei</td>
<td>-6235</td>
<td>8381</td>
<td>49</td>
<td>-4</td>
<td>52</td>
<td>5</td>
<td>SMA 100</td>
</tr>
<tr>
<td>Nikkei</td>
<td>-5928</td>
<td>6836</td>
<td>49</td>
<td>-4</td>
<td>52</td>
<td>4</td>
<td>SMA 200</td>
</tr>
<tr>
<td>AORD</td>
<td>5009</td>
<td>3929</td>
<td>55</td>
<td>3</td>
<td>51</td>
<td>3</td>
<td>SMA 5</td>
</tr>
<tr>
<td>AORD</td>
<td>3701</td>
<td>2674</td>
<td>54</td>
<td>2</td>
<td>50</td>
<td>2</td>
<td>SMA 25</td>
</tr>
<tr>
<td>AORD</td>
<td>2804</td>
<td>1864</td>
<td>54</td>
<td>1</td>
<td>50</td>
<td>1</td>
<td>SMA 50</td>
</tr>
<tr>
<td>AORD</td>
<td>2688</td>
<td>1521</td>
<td>54</td>
<td>1</td>
<td>50</td>
<td>1</td>
<td>SMA 100</td>
</tr>
<tr>
<td>AORD</td>
<td>2574</td>
<td>1616</td>
<td>54</td>
<td>1</td>
<td>51</td>
<td>2</td>
<td>SMA 200</td>
</tr>
</tbody>
</table>

It is the ratio of these scenarios that ultimately determines whether using a stop loss is a sound strategy.

Comparing Tables 4.5 and 4.6 it can be seen that applying the stop loss has been on the whole beneficial to the results obtained, with the exception of those from the Dow which were markedly negatively impacted. Essentially losing trades have been truncated while winning trades have been left to develop. One question that needs to be addressed is what value is appropriate for a stop loss. If the value is large the benefits of cutting losses is lost, whereas if it is too small a large number of trades will be “stopped out”. Many traders use a value based on the Average True Range (see Chapter 3 section 3.2.1 for details) as this allows for the volatility of a particular market.
4.3.2 Moving Average Convergence/Divergence (MACD)

Moving Average Convergence/Divergence (MACD) is a trend following indicator, developed by Appel (2005), that is formed from the relationship of two moving averages, see Appendix B section B.1 for more details. The value of MACD itself is the difference between two exponential moving averages (EMA), a “slower” e.g. 26 day value and a “faster” e.g. 12 day value. In addition an EMA of the MACD value is calculated, which is set to 9 days in the following algorithm, which acts as a “signal” line.

The MACD is generally used two ways. Firstly, it can be used to derive the general trend of the security so that the market participant can trade with the trend. Secondly, it can be employed to identify periods when the market is “over-bought” or “over-sold” and can be expected to reverse direction (Person, 2012).

In order to identify the trend of a market using the MACD indicator, the relative values of the MACD itself and the signal line are used. If the value of the MACD exceeds the signal it is considered “bullish” and the market is expected to rise in price. Similarly in
the opposite situation where the value of the signal is greater than the MACD the trend of the market is expected to be down.

Table 4.7 lists the results of using the MACD indicator in just such a way. The MACD value itself is generated using the EMA of the opening prices with values of 26 and 12 for the slow and long averages and a value of 9 days for the indicator line.

The trading algorithm splits the results into two values, days when the system expected the market to rise and days when a market decline were predicted (see Appendix A section A.1.3.2 for details of the R code used). At the start of each day if the MACD value exceeds the signal line the algorithm adds the value of the close price minus the opening price to the “Long PL” running total. Likewise in the opposite situation with the signal line greater than the MACD, the value of the open price minus the close price is added to the “Short PL”. Table 4.7 lists the results of the algorithm run against a variety of national indices.

Table 4.7: Results from a system using MACD as a trend indicator.

<table>
<thead>
<tr>
<th>Mkt</th>
<th>LongPL</th>
<th>ShortPL</th>
<th>L Win %</th>
<th>Av L PL</th>
<th>S Win %</th>
<th>Av S PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>-791</td>
<td>1424</td>
<td>53</td>
<td>0</td>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td>CAC</td>
<td>-4153</td>
<td>2188</td>
<td>49</td>
<td>-2</td>
<td>49</td>
<td>1</td>
</tr>
<tr>
<td>FTSE</td>
<td>63</td>
<td>-839</td>
<td>51</td>
<td>0</td>
<td>48</td>
<td>0</td>
</tr>
<tr>
<td>Dow</td>
<td>5592</td>
<td>-5190</td>
<td>53</td>
<td>3</td>
<td>46</td>
<td>-3</td>
</tr>
<tr>
<td>Nikkei</td>
<td>-4078</td>
<td>14064</td>
<td>49</td>
<td>-2</td>
<td>52</td>
<td>8</td>
</tr>
<tr>
<td>AORD</td>
<td>2563</td>
<td>1569</td>
<td>54</td>
<td>1</td>
<td>49</td>
<td>1</td>
</tr>
</tbody>
</table>
4.3.3 Aroon Indicator

Developed by Tushar Chande, the Aroon indicator was designed to identify trending markets (Chande and Kroll, 1994). The word aroon means “dawn’s early light” in Sanskrit and this indicator tries to pin point the dawning of a new trend. Essentially it is a measure of the time since the occurrence of a high/low price in a particular period. Further details can be seen in Appendix B section B.2.

Table 4.8: Results from a system based on the Aroon indicator.

<table>
<thead>
<tr>
<th>Mkt</th>
<th>LongPL</th>
<th>ShortPL</th>
<th>L Win %</th>
<th>Av L PL</th>
<th>S Win %</th>
<th>Av S PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>5308</td>
<td>5257</td>
<td>56</td>
<td>3</td>
<td>51</td>
<td>4</td>
</tr>
<tr>
<td>CAC</td>
<td>-1638</td>
<td>4919</td>
<td>50</td>
<td>-1</td>
<td>52</td>
<td>4</td>
</tr>
<tr>
<td>FTSE</td>
<td>3042</td>
<td>5715</td>
<td>52</td>
<td>2</td>
<td>51</td>
<td>5</td>
</tr>
<tr>
<td>Dow</td>
<td>12131</td>
<td>3811</td>
<td>55</td>
<td>7</td>
<td>49</td>
<td>3</td>
</tr>
<tr>
<td>Nikkei</td>
<td>-4852</td>
<td>12013</td>
<td>49</td>
<td>-3</td>
<td>52</td>
<td>10</td>
</tr>
<tr>
<td>AORD</td>
<td>3735</td>
<td>3540</td>
<td>55</td>
<td>2</td>
<td>50</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 4.8 shows the results of applying the Aroon algorithm (shown in Appendix A section A.1.3.3) on the data of the national indices. The results are promising with the indicator making positive predictions in most of the markets and doing particularly well in declining markets.

Table 4.9: Results from a system based on the Aroon indicator with stop loss.

<table>
<thead>
<tr>
<th>Mkt</th>
<th>LongPL</th>
<th>ShortPL</th>
<th>L Win %</th>
<th>Av L PL</th>
<th>S Win %</th>
<th>Av S PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>5410</td>
<td>7465</td>
<td>56</td>
<td>3</td>
<td>50</td>
<td>6</td>
</tr>
<tr>
<td>CAC</td>
<td>-1224</td>
<td>6086</td>
<td>50</td>
<td>-1</td>
<td>52</td>
<td>5</td>
</tr>
<tr>
<td>FTSE</td>
<td>3091</td>
<td>8015</td>
<td>52</td>
<td>2</td>
<td>51</td>
<td>7</td>
</tr>
<tr>
<td>Dow</td>
<td>-5922</td>
<td>-9341</td>
<td>49</td>
<td>-3</td>
<td>37</td>
<td>-8</td>
</tr>
<tr>
<td>Nikkei</td>
<td>3153</td>
<td>22177</td>
<td>46</td>
<td>2</td>
<td>47</td>
<td>18</td>
</tr>
<tr>
<td>AORD</td>
<td>3786</td>
<td>4159</td>
<td>55</td>
<td>2</td>
<td>50</td>
<td>4</td>
</tr>
</tbody>
</table>

The affects of using a stop loss with the Aroon indicator was investigated and the results shown in Table 4.9. The use of a stop loss was beneficial in all cases except the Dow, in which case it had a catastrophic impact turning a winning system into a losing one. The impact of the stop loss is shown in Table 4.10 which lists the difference in PL between the original results without a stop loss and the revised ones with it.

4.4 Market Reversal Indicators

The alternative to trend detection indicators are market reversal indicators, designed to identify when a trend may be ending and the market will start to move in the opposite
Table 4.10: Impact of using stop loss with Aroon trend indicator.

<table>
<thead>
<tr>
<th>Market</th>
<th>Long Difference</th>
<th>Short Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>102</td>
<td>2208</td>
</tr>
<tr>
<td>CAC</td>
<td>414</td>
<td>1167</td>
</tr>
<tr>
<td>FTSE</td>
<td>49</td>
<td>2300</td>
</tr>
<tr>
<td>Dow</td>
<td>-18053</td>
<td>-13152</td>
</tr>
<tr>
<td>Nikkei</td>
<td>8005</td>
<td>10164</td>
</tr>
<tr>
<td>AORD</td>
<td>51</td>
<td>619</td>
</tr>
</tbody>
</table>

direction. Many traders advocate that this type of trading should be avoided and cite the old phrase “never try to catch a falling knife”. Nevertheless a variety of market reversal technical indicators are explored and their effectiveness noted.

4.4.1 Parabolic Stop-and-Reverse (SAR)

The parabolic stop-and-reverse (SAR) is a method to calculate a trailing stop. This technical indicator was developed by J. Welles Wilder and is detailed in his book New Concepts in Technical Trading Systems (Wilder, 1978). A trailing stop is related to the stop loss explored previously but differs in that it is adjusted as the market moves. The level of this kind of stop loss is amended periodically such that it is a certain amount away from the high or low value of a market. As the market makes new highs it is adjusted up or down if the market makes new lows. The parabolic SAR calculates the point at which a long trade would be closed and a short position entered, the assumption being that the market participant is always in the market either short or long. More details on the theory and calculations to generate the parabolic SAR can be found in Appendix B section B.3.

Table 4.11 lists the results from passing a variety of national index data sets to an algorithm using the parabolic SAR. The R code used to generate these results can be seen in See Appendix A section A.1.4.1. On the whole the results from these initial tests are very disappointing. Only three of the national indices generated positive results and only the Japanese Nikkei provided reasonable returns.

4.4.2 MACD as reversal Indicator

MACD can also be used as a reversal indicator. Recalling that the MACD is formed from the relationship of two moving averages, when the faster one moves sharply away from the slower one (i.e. the value of MACD rises) this could be an indication of an “over-bought” market and that a reversal is approaching. In this situation the trader would
place a sell trade. The opposite is true for a large negative MACD, and it is postulated that the market may well reverse upwards.

Table 4.12 shows the results of applying the algorithm shown in Appendix A section A.1.4.2 on the data of the national indices. In the algorithm the 15% and 85% quantile of the MACD value is calculated and this is used to decide on the reversal point. Once the 85% value is exceeded the algorithm predicts a reversal will occur and trades short, the opposite is true for the 15% level which triggers a long trade. Overall the results are very modest, with small positive gains being seen in 5 of the 6 national indices.

Table 4.12: Results from a trading system based on MACD being used as a trend reversal indicator.

<table>
<thead>
<tr>
<th>Mkt</th>
<th>LongPL</th>
<th>ShortPL</th>
<th>L Win %</th>
<th>Av L PL</th>
<th>S Win %</th>
<th>Av S PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>391</td>
<td>407</td>
<td>49</td>
<td>1</td>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td>CAC</td>
<td>-545</td>
<td>2657</td>
<td>51</td>
<td>-1</td>
<td>55</td>
<td>5</td>
</tr>
<tr>
<td>FTSE</td>
<td>2080</td>
<td>1649</td>
<td>53</td>
<td>4</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>Dow</td>
<td>3882</td>
<td>-807</td>
<td>52</td>
<td>7</td>
<td>48</td>
<td>-2</td>
</tr>
<tr>
<td>Nikkei</td>
<td>199</td>
<td>2828</td>
<td>51</td>
<td>0</td>
<td>52</td>
<td>6</td>
</tr>
<tr>
<td>AORD</td>
<td>-319</td>
<td>-584</td>
<td>50</td>
<td>-1</td>
<td>49</td>
<td>-1</td>
</tr>
</tbody>
</table>

4.5 Momentum Indicators

Momentum indicators are closely related to the trend indicators introduced in section 4.3. They are concerned with trending markets but differ in that the strength of the trend is also included in the information the indicator attempts to portray.

4.5.1 Stochastic Oscillator

The stochastic indicator is one of the oldest in widespread use today having been developed by George Lane in the 1950s (Lane, 1986). It measures the relative position
of a market’s closing price in the range between the low and high of the period of interest. This is of interest as some market participants believe that financial markets essentially swing between price boundaries marked by where the market closes in this range (Williams, 2011). Thus markets increase until the close is at the top of this range before changing direction and moving down until it is at the bottom of the high low range.

The stochastic is usually represented by two lines %K which is the position of the price within this high low envelope described above, and %D a moving average of %K (see Appendix B section B.4 for more details). It can be used a number of ways and one popular technique is to go long when the %K crosses above %D and to go short in the opposite situation. Table 4.13 lists the results from passing a variety of national index data sets to an algorithm which uses the relative position of %K and %D to decide which way to trade. The R code used to generate these results can be seen in See Appendix A section A.1.4.3.

<table>
<thead>
<tr>
<th>Mkt</th>
<th>LongPL</th>
<th>ShortPL</th>
<th>L Win %</th>
<th>Av L PL</th>
<th>S Win %</th>
<th>Av S PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>-28</td>
<td>1673</td>
<td>53</td>
<td>0</td>
<td>49</td>
<td>1</td>
</tr>
<tr>
<td>CAC</td>
<td>-4540</td>
<td>1817</td>
<td>48</td>
<td>-3</td>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td>FTSE</td>
<td>-73</td>
<td>-744</td>
<td>51</td>
<td>0</td>
<td>48</td>
<td>0</td>
</tr>
<tr>
<td>Dow</td>
<td>867</td>
<td>-9414</td>
<td>53</td>
<td>0</td>
<td>46</td>
<td>-5</td>
</tr>
<tr>
<td>Nikkei</td>
<td>-10591</td>
<td>7802</td>
<td>48</td>
<td>-6</td>
<td>51</td>
<td>5</td>
</tr>
<tr>
<td>AORD</td>
<td>2839</td>
<td>1780</td>
<td>54</td>
<td>2</td>
<td>49</td>
<td>1</td>
</tr>
</tbody>
</table>

The results from Table 4.13 for this system are very modest with only the Australian ORD showing positive values for both long and short trades. Adding a stop loss of 100 points increases the PL across the board except for the case of the Dow where again the stop loss has had a detrimental affect. The results from using a stochastic based system with a stop loss can be seen in Table 4.14.

<table>
<thead>
<tr>
<th>Mkt</th>
<th>LongPL</th>
<th>ShortPL</th>
<th>L Win %</th>
<th>Av L PL</th>
<th>S Win %</th>
<th>Av S PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>1173</td>
<td>3889</td>
<td>52</td>
<td>1</td>
<td>48</td>
<td>2</td>
</tr>
<tr>
<td>CAC</td>
<td>-3493</td>
<td>2730</td>
<td>48</td>
<td>-2</td>
<td>48</td>
<td>2</td>
</tr>
<tr>
<td>FTSE</td>
<td>1640</td>
<td>1424</td>
<td>51</td>
<td>1</td>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td>Dow</td>
<td>-13969</td>
<td>-27388</td>
<td>45</td>
<td>-8</td>
<td>37</td>
<td>-16</td>
</tr>
<tr>
<td>Nikkei</td>
<td>1647</td>
<td>17977</td>
<td>45</td>
<td>1</td>
<td>46</td>
<td>10</td>
</tr>
<tr>
<td>AORD</td>
<td>3028</td>
<td>1974</td>
<td>54</td>
<td>2</td>
<td>49</td>
<td>1</td>
</tr>
</tbody>
</table>
4.5.2 Rate of Change (ROC)

The Rate of Change (ROC) indicator is a simple and widely observed technical indicator. It is the difference between the current price and the price several observations ago. See Appendix B section B.5 for details. If this value is large, either positive or negative, it is indicative of a strongly trending market with a lot of momentum either upwards or downwards. The R code for a trading system exploiting these ideas can be seen in Appendix A section A.1.4.4. The results can be seen in Table 4.15 which lists the results from passing a variety of national index data sets to the algorithm.

Table 4.15: Results from a system based on the ROC indicator.

<table>
<thead>
<tr>
<th>Mkt</th>
<th>LongPL</th>
<th>ShortPL</th>
<th>L Win %</th>
<th>Av L PL</th>
<th>S Win %</th>
<th>Av S PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>1026</td>
<td>180</td>
<td>50</td>
<td>2</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>CAC</td>
<td>952</td>
<td>956</td>
<td>53</td>
<td>2</td>
<td>51</td>
<td>2</td>
</tr>
<tr>
<td>FTSE</td>
<td>1147</td>
<td>1880</td>
<td>51</td>
<td>2</td>
<td>51</td>
<td>4</td>
</tr>
<tr>
<td>Dow</td>
<td>8517</td>
<td>3396</td>
<td>58</td>
<td>16</td>
<td>49</td>
<td>6</td>
</tr>
<tr>
<td>Nikkei</td>
<td>2971</td>
<td>2546</td>
<td>50</td>
<td>6</td>
<td>52</td>
<td>5</td>
</tr>
<tr>
<td>AORD</td>
<td>271</td>
<td>1325</td>
<td>51</td>
<td>1</td>
<td>52</td>
<td>2</td>
</tr>
</tbody>
</table>

4.6 Breakout systems

This section explores some trading systems that use a particular price as the indicator to place a trade. The first system uses the simple idea of trading when the previous day’s high or low is passed. The second idea is related to the results generated in Chapter 3, where the 90% quantile for the day’s minor move was calculated. The system tested here is to simply trade long or short when this point is reached in a day.

4.6.1 Daily High/Low Breakout System

Table 4.16 lists the results from a trading system based around the idea of trading after the previous day’s high or low price has been breached. The R code used to generate these results can be seen in See Appendix A section A.1.5.1.

Referring to Table 4.16 we can see that this system produces good results, with the exception of the US Dow. This ties in with the data in Chapter 3 Table 3.6 which shows that the Dow only closes outside of the previous low or high price a relatively low number of times. Likewise good results are seen with the Japanese Nikkei from the breakout system and this tallies with the high proportion of the time in which it closes above or below the previous day’s high or low.
Table 4.16: Results from the Daily High/Low Breakout System.

<table>
<thead>
<tr>
<th>Mkt</th>
<th>LongPL</th>
<th>ShortPL</th>
<th>L Win %</th>
<th>Av L PL</th>
<th>S Win %</th>
<th>Av S PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>12225</td>
<td>13411</td>
<td>55</td>
<td>7</td>
<td>54</td>
<td>8</td>
</tr>
<tr>
<td>CAC</td>
<td>3491</td>
<td>6955</td>
<td>53</td>
<td>2</td>
<td>53</td>
<td>4</td>
</tr>
<tr>
<td>FTSE</td>
<td>13189</td>
<td>18481</td>
<td>59</td>
<td>7</td>
<td>59</td>
<td>12</td>
</tr>
<tr>
<td>Dow</td>
<td>-19598</td>
<td>-28337</td>
<td>42</td>
<td>-11</td>
<td>38</td>
<td>-17</td>
</tr>
<tr>
<td>Nikkei</td>
<td>31988</td>
<td>43554</td>
<td>57</td>
<td>19</td>
<td>58</td>
<td>27</td>
</tr>
<tr>
<td>AORD</td>
<td>17225</td>
<td>19184</td>
<td>66</td>
<td>10</td>
<td>65</td>
<td>13</td>
</tr>
</tbody>
</table>

4.6.2 Breakout of 90% Quantile Level

A second system utilising the breakout concept is presented in this section. In Chapter 3 one characteristic of the markets was noted, namely that each day the market moves from its opening price to a low price and then to a high price (not necessarily in any particular order). One of these moves (O-H vs O-L) is greater than the other was termed the major move and the smaller move was called the minor move. The algorithm generating the results in this section (see Appendix A section A.1.5.2) makes a long or short trade after the market has passed the 90% quantile of the minor move. Table 4.17 lists the results from this algorithm.

Table 4.17: Results from a system that breaks out from the 90% quantile level of the day’s minor move.

<table>
<thead>
<tr>
<th>Mkt</th>
<th>LongPL</th>
<th>ShortPL</th>
<th>L Win %</th>
<th>Av L PL</th>
<th>S Win %</th>
<th>Av S PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>7841</td>
<td>6371</td>
<td>56</td>
<td>6</td>
<td>53</td>
<td>4</td>
</tr>
<tr>
<td>CAC</td>
<td>2647</td>
<td>5085</td>
<td>54</td>
<td>2</td>
<td>52</td>
<td>3</td>
</tr>
<tr>
<td>FTSE</td>
<td>10758</td>
<td>15295</td>
<td>56</td>
<td>7</td>
<td>54</td>
<td>10</td>
</tr>
<tr>
<td>Dow</td>
<td>-30262</td>
<td>-34854</td>
<td>39</td>
<td>-24</td>
<td>37</td>
<td>-28</td>
</tr>
<tr>
<td>Nikkei</td>
<td>23606</td>
<td>31830</td>
<td>58</td>
<td>16</td>
<td>56</td>
<td>20</td>
</tr>
<tr>
<td>AORD</td>
<td>16730</td>
<td>19357</td>
<td>63</td>
<td>9</td>
<td>62</td>
<td>12</td>
</tr>
</tbody>
</table>

4.7 Candlestick Patterns

As previously noted in Chapter 2 section 2.1.5 candlestick patterns are visual representations of price movements over the course of a particular time period (often a day) in terms of the market’s opening, closing, high and low prices. The pattern generated from these price markets are categorised and named depending upon the visual shape they produce. Thus candlestick patterns represent the counter forces of buyers and sellers throughout the trading period. This section analyses some well known candlestick patterns for predictive power in making trading decisions (Lu, 2014).
4.7.1 Hanging Man, Hammer, Inverted Hanging Man and Shooting Star

Four well-known patterns that are generally considered to indicate the possible end of a trend and the start of a reversal are the so-called Hanging Man, Hammer, Inverted Hanging Man and Shooting Star candlestick patterns.

![Hammer and Inverted Hammer patterns](image1)

Figure 4.3: Hammer and Inverted Hammer candlestick patterns.

Figure 4.3 is a diagram of a Hammer and Inverted Hammer patterns. Both patterns have a small “body” (the distance between the open and close prices) and a long “shadow” (the distance between the high and low prices). In the diagrams presented here a white candlestick means the market price increased over the course of the day while a black one means the market fell. The body of the candlestick is white in this case, indicating that the market moved up (the closing price was above the opening price), although by only a small amount. Hammer and Inverted Hammer differ in that the long shadow in hammer is generated from a low price whereas the shadow of Inverted Hammer goes upwards as it is indicative of the period’s high price.

![Hanging Man and Shooting Star patterns](image2)

Figure 4.4: Hanging Man and Shooting Star candlestick patterns.

Figure 4.4 is a diagram of Hanging Man and Shooting Star, these being the opposite to Hammer and Inverted Hammer. In this case the market direction is down, albeit only by a small amount, and thus the body of the candlestick is a different colour, in this
case black. Again both patterns have long shadows, the direction of which determines if the pattern is Hanging Man or Shooting Star.

Both sets of patterns Hammer/Inverted Hammer and Hanging Man/Shooting Star are considered to indicate that a trend is coming to a close and a reversal could be looming. In the case of Hammer/Inverted Hammer if they are encountered during a down trend they could indicate that the selling pressure is easing and a market move to the upside could happen soon. The opposite is true for Hanging Man/Shooting Star. When these are encountered in an up trend they often indicate that the trend is ending and a reversal may occur. Figure 4.5 shows daily candlestick patterns for the German DAX over 22 days in April 2014. A Shooting Star is circled on the 6th April and a Hanging Man on the 23rd April. In each case they occur while the market is rising and in each case it reverses immediately afterwards.

In order to have a system based on candlestick patterns, the pattern itself must be identified in code. A Hammer and Hanging Man are essentially the same pattern except Hammer has a close higher than the open whereas Hanging Man represents a decline in the price. For these patterns three components are defined, the length of the upper shadow (short), the size of the body (short) and the length of the lower shadow. In the trading system that follows these were defined as:

1. Upper Shadow - the value of the day’s high minus the high of the body is less than 10% the total High-Low range.
2. Body - is larger than 10% the total High-Low range.
3. Lower Shadow - the value of the day’s low minus the low of the body is greater than 66% of the High-Low range.
Analysing the DAX data set running from 2000 to 2013 with 3570 observations, and using the criteria described above 35 Hammer and 48 Hanging Man patterns can be detected.

Inverted Hammer and Shooting Star are again the same pattern except in Inverted Hammer the price rose. In the later system these are defined as:

1. Upper Shadow - the value of the day’s high minus the high of the body is at least 66% the total High-Low range.

2. Body - is larger than 10% the total High-Low range.

3. Lower Shadow - the value of the day’s low minus the low of the body is less than 10% of the High-Low range.

Considering the DAX data set again, occurrences of these patterns are quite rare with 30 Inverted Hammers and 17 Shooting Stars in 3570 observations.

Results from a trading system based on the Hammer/Inverted Hammer can be seen in Table 4.18 and the R code in Appendix A section A.1.6.1. The algorithm simply places a buy the day after a Hammer or Inverted Hammer occur, the assumption being that these patterns indicate that the market is about to rise.

<table>
<thead>
<tr>
<th>Mkt</th>
<th>LongPL</th>
<th>L Win %</th>
<th>L Trades</th>
<th>Av L PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>594</td>
<td>53</td>
<td>126</td>
<td>5</td>
</tr>
<tr>
<td>CAC</td>
<td>-793</td>
<td>44</td>
<td>149</td>
<td>-5</td>
</tr>
<tr>
<td>FTSE</td>
<td>834</td>
<td>58</td>
<td>188</td>
<td>4</td>
</tr>
<tr>
<td>Dow</td>
<td>2097</td>
<td>59</td>
<td>88</td>
<td>24</td>
</tr>
<tr>
<td>Nikkei</td>
<td>-2202</td>
<td>48</td>
<td>147</td>
<td>-15</td>
</tr>
<tr>
<td>AORD</td>
<td>-809</td>
<td>46</td>
<td>236</td>
<td>-3</td>
</tr>
</tbody>
</table>

An alternative approach is to look for Hammer and Inverted Hammer patterns occurring in a down trend, in which case it could signal the end of the down trend and the start of a reversal. Table 4.19 shows the results of using the Hammer and Inverted Hammer to predict a price rise during a down trend. An aroon down value of greater than 65 (with a 20 day look back period) is used to define the down trend. The algorithm can be seen in Appendix A section A.1.6.2.
Table 4.19: Results from a system based on the Hammer and Inverted Hammer candlestick patterns occurring in a downtrend as defined by the aroon value.

<table>
<thead>
<tr>
<th>Mkt</th>
<th>LongPL</th>
<th>L Win %</th>
<th>L Trades</th>
<th>Av L PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>-187</td>
<td>42</td>
<td>36</td>
<td>-5</td>
</tr>
<tr>
<td>CAC</td>
<td>-515</td>
<td>44</td>
<td>55</td>
<td>-9</td>
</tr>
<tr>
<td>FTSE</td>
<td>281</td>
<td>55</td>
<td>65</td>
<td>4</td>
</tr>
<tr>
<td>Dow</td>
<td>730</td>
<td>55</td>
<td>22</td>
<td>33</td>
</tr>
<tr>
<td>Nikkei</td>
<td>-934</td>
<td>48</td>
<td>58</td>
<td>-16</td>
</tr>
<tr>
<td>AORD</td>
<td>-614</td>
<td>41</td>
<td>77</td>
<td>-8</td>
</tr>
</tbody>
</table>

4.7.2 Engulfing Candlestick

The “Engulfing” pattern, either Bull or Bear is another widely considered candlestick pattern and is depicted in Figure 4.6. This pattern has a lower low and a higher high than the preceding candlestick and is usually interpreted as indicating a change in direction of the trend. Engulfing candlesticks can be either bullish, where the closing price is above the opening price or bearish when the market moves down.

Table 4.20 lists the results from passing a variety of national index data sets (see Appendix A section A.1.6.3 for details) to an algorithm that buys or sells the market depending on the presence of an Engulfing pattern.

Table 4.20: Results from a system based on the Engulfing candlestick pattern.

<table>
<thead>
<tr>
<th>Mkt</th>
<th>LongPL</th>
<th>ShortPL</th>
<th>L Win %</th>
<th>Av L PL</th>
<th>S Win %</th>
<th>Av S PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>-920</td>
<td>-258</td>
<td>44</td>
<td>-7</td>
<td>46</td>
<td>-2</td>
</tr>
<tr>
<td>CAC</td>
<td>-319</td>
<td>228</td>
<td>45</td>
<td>-2</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>FTSE</td>
<td>-1721</td>
<td>1185</td>
<td>51</td>
<td>-4</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>Dow</td>
<td>-770</td>
<td>-3662</td>
<td>48</td>
<td>-4</td>
<td>35</td>
<td>-28</td>
</tr>
<tr>
<td>Nikkei</td>
<td>-3823</td>
<td>-1166</td>
<td>37</td>
<td>-39</td>
<td>44</td>
<td>-11</td>
</tr>
<tr>
<td>AORD</td>
<td>-6</td>
<td>-600</td>
<td>53</td>
<td>0</td>
<td>46</td>
<td>-3</td>
</tr>
</tbody>
</table>
Table 4.21 lists the results from extending the algorithm such that trades are only taken in either up or down trends, as defined by the aroon indicator. The R code for the amended algorithm can be see Appendix A section A.1.6.4.

Table 4.21: Results from a system based on the Engulfing candlestick pattern in a trending market.

<table>
<thead>
<tr>
<th>Mkt</th>
<th>LongPL</th>
<th>ShortPL</th>
<th>L Win %</th>
<th>Av L PL</th>
<th>S Win %</th>
<th>Av S PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>-874</td>
<td>-513</td>
<td>38</td>
<td>-20</td>
<td>43</td>
<td>-7</td>
</tr>
<tr>
<td>CAC</td>
<td>-118</td>
<td>-666</td>
<td>49</td>
<td>-3</td>
<td>30</td>
<td>-11</td>
</tr>
<tr>
<td>FTSE</td>
<td>-1217</td>
<td>-782</td>
<td>47</td>
<td>-8</td>
<td>48</td>
<td>-3</td>
</tr>
<tr>
<td>Dow</td>
<td>202</td>
<td>-1154</td>
<td>45</td>
<td>4</td>
<td>44</td>
<td>-11</td>
</tr>
<tr>
<td>Nikkei</td>
<td>-1522</td>
<td>-1733</td>
<td>38</td>
<td>-59</td>
<td>37</td>
<td>-32</td>
</tr>
<tr>
<td>AORD</td>
<td>-49</td>
<td>-27</td>
<td>53</td>
<td>-1</td>
<td>50</td>
<td>0</td>
</tr>
</tbody>
</table>

4.7.3 Doji

Doji is a well-known candlestick pattern that can appear on its own or as a component of a pattern. A Doji forms when the open and close price are similar and there is an upper and lower shadow, thus they often resemble a cross. Variations within Doji include the Dragonfly and Gravestone Doji, see Figure 4.7. In an up trend Doji (especially Gravestone) can indicate a reversal could occur and likewise in a down trend a Dragonfly could suggest an upward move is about to start.

Table 4.22 lists the results from passing a variety of national index data sets (see Appendix A section A.1.6.5 for details) to an algorithm that buys or sells the market depending on the presence of a Doji. In an up trend, as identified by the aroon indicator, a Doji or Gravestone is used to initiate a sell and conversely in down trend a Doji or Dragonfly is used as a signal to buy.
Table 4.22: Results from a system based on the Doji candlestick pattern in a trending market.

<table>
<thead>
<tr>
<th>Mkt</th>
<th>LongPL</th>
<th>ShortPL</th>
<th>L Win %</th>
<th>Av L PL</th>
<th>S Win %</th>
<th>Av S PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>-826</td>
<td>-1132</td>
<td>53</td>
<td>-8</td>
<td>52</td>
<td>-6</td>
</tr>
<tr>
<td>CAC</td>
<td>-747</td>
<td>-326</td>
<td>46</td>
<td>-6</td>
<td>49</td>
<td>-2</td>
</tr>
<tr>
<td>FTSE</td>
<td>-697</td>
<td>418</td>
<td>53</td>
<td>-8</td>
<td>52</td>
<td>3</td>
</tr>
<tr>
<td>Dow</td>
<td>-763</td>
<td>-2869</td>
<td>51</td>
<td>-5</td>
<td>50</td>
<td>-10</td>
</tr>
<tr>
<td>Nikkei</td>
<td>1296</td>
<td>-2944</td>
<td>55</td>
<td>12</td>
<td>45</td>
<td>-22</td>
</tr>
<tr>
<td>AORD</td>
<td>-115</td>
<td>195</td>
<td>54</td>
<td>-1</td>
<td>54</td>
<td>2</td>
</tr>
</tbody>
</table>
Chapter 5

Time Series

This chapter will explore the use of time series analysis techniques to generate models for forecasting prices in various national stock market indices. Usually, in trying to predict the future behaviour of financial markets the direction they will move, either up or down, is of more interest than the actual value itself. Thus, in this chapter predictions of the future direction as well as the actual value itself are attempted. A variety of time series models are developed using exponential smoothing, ARIMA and hybrid ARIMA methods.

5.1 Exponential Smoothing

Exponential smoothing was applied to the stock market indice data sets in order to generate predictions for the following day’s closing price, so-called one-step ahead forecasts. Two basic approaches and an exponential smoothing methodology were examined. The two basic methods provide a useful baseline against which to compare later models, and are the mean and drift methodologies. The mean is simply the average of the data points in the sample while the drift is equivalent to drawing a straight line between the first and last point of the sample and then extrapolating this line forward the desired number of observations.

5.1.1 Time Series Base Models

Figure 5.1 shows the two base methods, mean and drift, being applied to a data set derived from the German DAX. The models were trained on the first 3000 observations of the DAX data set and tested on the remaining ones. The actual data points being predicted in Figure 5.1 are added to the plot in Figure 5.2. Five error measures, root
mean square error (RMSE), mean absolute error (MAE), mean percentage error (MPE), mean absolute percentage error (MAPE) and mean absolute scaled error (MASE) for the two methods are listed in Table 5.1. From these error measures we can see that the drift model fits the training data the best, having the smallest error values across all the measures, but that the mean model actually performs the best on the test data.

Table 5.1: Error measures from mean and drift models.

<table>
<thead>
<tr>
<th></th>
<th>RMSE</th>
<th>MAE</th>
<th>MPE</th>
<th>MAPE</th>
<th>MASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Training Set</td>
<td>1394</td>
<td>1183</td>
<td>-8</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>Mean Test Set</td>
<td>208</td>
<td>163</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Drift Training Set</td>
<td>84</td>
<td>61</td>
<td>-0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Drift Test Set</td>
<td>302</td>
<td>262</td>
<td>-5</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

Looking at Figure 5.2 it can be seen that neither the mean or the drift does a good job with the predictions for the DAX. The forecasts were based on the entire data set, treating it as a homogeneous whole. However, financial time series typically show a variety of behaviour at different periods. On occasions it is stationary and at other times trending. Thus, in the following sections, in order to generate forecasts a sliding window approach was adopted. A window of data (the last 30 observations) was used to generate a model and the one-step ahead forecast, before the window was advanced one observation to the next period. In this way the model is constantly adapting and changing. Using this approach forecasts and models for use in a trading system from a mean, drift and exponential smoothing methodology were developed.
5.1.2 Trading System Based on Mean Model

Results from a trading system using the one-step ahead forecasts generated by the mean model using a moving window are listed in Table 5.2. A trading algorithm, which can be seen in Appendix A section A.2.1, used these forecasts to decide in which direction to trade. If the forecast was higher than the closing price a long trade was entered the following day and likewise if it was below the close a short trade was entered.

<table>
<thead>
<tr>
<th>Mkt</th>
<th>LongPL</th>
<th>ShortPL</th>
<th>L Win %</th>
<th>Av L PL</th>
<th>S Win %</th>
<th>Av S PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>-1640</td>
<td>-1505</td>
<td>50</td>
<td>-1</td>
<td>45</td>
<td>-1</td>
</tr>
<tr>
<td>CAC</td>
<td>-1086</td>
<td>3553</td>
<td>52</td>
<td>-1</td>
<td>51</td>
<td>2</td>
</tr>
<tr>
<td>FTSE</td>
<td>1680</td>
<td>345</td>
<td>53</td>
<td>1</td>
<td>49</td>
<td>0</td>
</tr>
<tr>
<td>Dow</td>
<td>8356</td>
<td>-2126</td>
<td>54</td>
<td>7</td>
<td>46</td>
<td>-1</td>
</tr>
<tr>
<td>Nikkei</td>
<td>-32</td>
<td>10646</td>
<td>51</td>
<td>0</td>
<td>53</td>
<td>6</td>
</tr>
<tr>
<td>AORD</td>
<td>-1333</td>
<td>-2149</td>
<td>50</td>
<td>-1</td>
<td>46</td>
<td>-1</td>
</tr>
</tbody>
</table>

5.1.3 Trading System Based on Drift Model

In a similar way to the mean model of section 5.1.2 the predictions generated by the drift model were passed to the trading algorithm and the results can be seen in Table 5.3.
Table 5.3: Results from trading the predictions generated by a drift exponential smoothing system.

<table>
<thead>
<tr>
<th>Mkt</th>
<th>LongPL</th>
<th>ShortPL</th>
<th>L Win %</th>
<th>Av L PL</th>
<th>S Win %</th>
<th>Av S PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>2310</td>
<td>2445</td>
<td>54</td>
<td>1</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>CAC</td>
<td>-2422</td>
<td>2217</td>
<td>49</td>
<td>-1</td>
<td>48</td>
<td>2</td>
</tr>
<tr>
<td>FTSE</td>
<td>-518</td>
<td>-1853</td>
<td>51</td>
<td>0</td>
<td>47</td>
<td>-1</td>
</tr>
<tr>
<td>Dow</td>
<td>5416</td>
<td>-5066</td>
<td>54</td>
<td>3</td>
<td>46</td>
<td>-4</td>
</tr>
<tr>
<td>Nikkei</td>
<td>-6939</td>
<td>3739</td>
<td>48</td>
<td>-4</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>AORD</td>
<td>1476</td>
<td>660</td>
<td>53</td>
<td>1</td>
<td>49</td>
<td>1</td>
</tr>
</tbody>
</table>

5.1.4 Trading System Based on Exponential Smoothing Model

Using Rob J Hyndman’s forecast package for R and the ets function, a variety of exponential smoothing methods can be applied to sample data (Hyndman and Yeasmin, 2008). Table 5.4 lists fifteen possibilities when one combines trend and seasonality, both additive and multiplicative. In fact Hyndman extends this further by allowing the error term to be either added or multiplied against the results.

Table 5.4: Taxonomy of exponential smoothing methods.

<table>
<thead>
<tr>
<th>Trend Component</th>
<th>Seasonal Component</th>
<th>N (None)</th>
<th>A (Additive)</th>
<th>M (Multiplicative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (None)</td>
<td>(N,N)</td>
<td>(N,A)</td>
<td>(N,M)</td>
<td></td>
</tr>
<tr>
<td>A (Additive)</td>
<td>(A,N)</td>
<td>(A,A)</td>
<td>(A,M)</td>
<td></td>
</tr>
<tr>
<td>Ad (Additive damped)</td>
<td>(Ad,N)</td>
<td>(Ad,A)</td>
<td>(Ad,M)</td>
<td></td>
</tr>
<tr>
<td>M (Multiplicative)</td>
<td>(M,N)</td>
<td>(M,A)</td>
<td>(M,M)</td>
<td></td>
</tr>
<tr>
<td>Md (Multiplicative damped)</td>
<td>(Md,N)</td>
<td>(Md,A)</td>
<td>(Md,M)</td>
<td></td>
</tr>
</tbody>
</table>

Using a sliding window approach, one-step ahead forecasts were generated using the ets function. Because a different sample of data was contained in each window, the exponential smoothing function selects the best model for each window of data independently of the data set as a whole. Thus, the ets function applies a variety of models to the individual windows of data contained within a particular data set.

The one-step ahead forecasts generated from these models were once again passed to the same trading algorithm listed in Appendix A section A.2.1 and the results can be seen in Table 5.5.
Table 5.5: Results from trading the predictions generated by a moving window exponential smoothing system.

<table>
<thead>
<tr>
<th>Mkt</th>
<th>LongPL</th>
<th>ShortPL</th>
<th>L Win %</th>
<th>Av L PL</th>
<th>S Win %</th>
<th>Av S PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>-2029</td>
<td>-1894</td>
<td>53</td>
<td>-1</td>
<td>47</td>
<td>-1</td>
</tr>
<tr>
<td>CAC</td>
<td>-266</td>
<td>4048</td>
<td>52</td>
<td>0</td>
<td>51</td>
<td>2</td>
</tr>
<tr>
<td>FTSE</td>
<td>3866</td>
<td>2531</td>
<td>53</td>
<td>3</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>Dow</td>
<td>12901</td>
<td>2419</td>
<td>57</td>
<td>8</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>Nikkei</td>
<td>-2741</td>
<td>7937</td>
<td>49</td>
<td>-2</td>
<td>51</td>
<td>5</td>
</tr>
<tr>
<td>AORD</td>
<td>645</td>
<td>-171</td>
<td>52</td>
<td>0</td>
<td>48</td>
<td>0</td>
</tr>
</tbody>
</table>

5.2 ARIMA Models

The use of Auto-Regressive Integrated Moving Average (ARIMA) models, see section 2.2.4 for details, was explored in order to forecast future prices for financial markets. The process of fitting an ARIMA model to a time series is quite challenging and involves the following general steps:

1. Plot the data to get a general feel for the time series and to establish if it is stationary.
2. Stabilize any variance in the data with a transformation process such as the Box-Cox method.
3. ARIMA models work with stationary data, so if necessary, take differences of the data until it is stationary.
4. Examine the auto-correlation and partial auto-correlation (ACF/PACF) plots in order to determine if an AR(p) or MA(q) model is appropriate.
5. Test the chosen model(s), using the AICc to determine if a better model is available.
6. Check the residuals from the best model by plotting the ACF, and doing a portmanteau test on them. If the results from these tests do not look like white noise, a modified model may be required.
7. Finally, once the residuals have a similar pattern to white noise, the model can be used to generate forecasts.

In recent years automatic forecasting algorithms have become available and are widely used (Hyndman and Yeasmin, 2008). These are necessary in a variety of circumstances, especially when organisations are faced with the need to repeatedly carry out a large number of forecasts and the human effort required renders manual means impractical.
The auto.arima function found in R’s “forecast” package is an example of an automatic algorithm for ARIMA models. This function automates steps 3, 4, and 5 of those outlined previously, in the general steps required for ARIMA modelling. In the following sections, the general steps are used to generate an ARIMA model manually, and then the automatic algorithm is utilised to build one.

5.3 Manual Generation of ARIMA Models

5.3.1 Data Exploration

The first step, as always is to explore the data. Figure 5.3 shows the UK’s FTSE 100 index between the years 2000 to 2013. Over this time period the series has shown strong trends to move up and down and a uniform variance. Because the time series is non-stationary it will need to be transformed into a stationary series before ARIMA modelling can be undertaken.

![FTSE 2000 − 2013](image)

Figure 5.3: UK’s FTSE 100 index between the years 2000 to 2013.

5.3.2 Adjusting for non-uniform variance and non-stationariness

The variance within the FTSE time series is relatively uniform and thus this data set doesn’t need stabilizing with regard to this. If it did, a Box-Cox transformation could be used. However, over this time period the FTSE 100 exhibits marked non-stationariness and requires adjusting accordingly. One such technique to make a data set stationary is differencing. Instead of using the actual observations the differences between two adjacent points are used and this is known as the first difference. If the data set still
isn’t stationary the difference between consecutive points in the differenced data set can used, this is the difference of the differences and is known as the second difference. Figure 5.4 shows the FTSE data set after the first differences have been taken. The resulting data set is now stationary.

\[\text{First Difference of FTSE 2000 - 2013} \]

\[\text{Days since 2000} \]

\[\text{FTSE Daily Price Movement} \]

\[0 \quad 500 \quad 1000 \quad 1500 \quad 2000 \quad 2500 \quad 3000 \]

\[-400 \quad -200 \quad 0 \quad 200 \quad 400 \]

\[\text{Figure 5.4: First difference of FTSE 100 between the years 2000 to 2013.} \]

5.3.3 Examine ACF/PACF

With a stationary data set, the next stage is to investigate the auto-correlation and partial auto-correlation (ACF/PACF) plots in order to help in the model selection process (see section 2.2.5 for details of ACF and PACF). The ACF and PACF for the FTSE data set can be seen in Figures 5.5 and 5.6.

If ultimately the ARIMA model is of the form ARIMA(p,d,0) or ARIMA(0,d,q) then the ACF and PACF plots are useful in helping to define values for p or q. In the event that both p and q are positive, the ACF and PACF are not helpful in deducing the values for p and q. An ARIMA(p,d,0) model may be appropriate if the ACF and PACF plots of the stationary data exhibit an exponentially decaying pattern in the ACF and a large spike at lag p in PACF plot. Conversely an ARIMA(0,d,q) model may be appropriate if the PACF is decaying exponentially and there is there is a significant spike in the ACF plot at lag q. Considering the ACF and PACF plots in Figures 5.5 and 5.6, neither of the two patterns are observed and thus an ARIMA model where both p and q are positive is likely.
5.3.4 Try the chosen model(s)

The next step is to try the chosen model along with a few viable alternatives. Akaike’s Information Criterion (AIC) and Bayesian Information Criterion (BIC) are useful for determining the optimum order of an ARIMA model, and are typically used as a measure of how well the model fits the data. AIC can be given by:

$$AIC = -2 \log(L) + 2(p + q + k + 1)$$
where:
L is the likelihood of the data and $k = 1$ if $c \neq 0$ and $k = 0$ if $c \neq 0$, the last term in parentheses is the number of parameters in the model.

For ARIMA models, the corrected AIC can be written as:

$$AIC_c = AIC + \frac{2(p + q + k + 1)(p + q + k + 2)}{T - p - q - k - 2}$$

The Bayesian Information Criterion can be expressed as:

$$BIC = AIC + \log(T)(p + q + k + 1)$$

Table 5.6 shows the AIC, AICc and BIC accuracy measures for a selection of ARIMA models applied to the FTSE data set. On all three measures the ARIMA(2,1,3) model has the lowest value.

Table 5.6: AIC, AICc and BIC results from alternative ARIMA models.

<table>
<thead>
<tr>
<th>Model</th>
<th>AIC</th>
<th>AICc</th>
<th>BIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARIMA(3,1,1)</td>
<td>33598.5</td>
<td>33598.5</td>
<td>33628.5</td>
</tr>
<tr>
<td>ARIMA(3,1,2)</td>
<td>33594.6</td>
<td>33594.6</td>
<td>33630.6</td>
</tr>
<tr>
<td>ARIMA(3,1,3)</td>
<td>33596.1</td>
<td>33596.1</td>
<td>33638.1</td>
</tr>
<tr>
<td>ARIMA(2,1,1)</td>
<td>33616.4</td>
<td>33616.4</td>
<td>33640.4</td>
</tr>
<tr>
<td>ARIMA(2,1,2)</td>
<td>33618.1</td>
<td>33618.1</td>
<td>33648.1</td>
</tr>
<tr>
<td>ARIMA(2,1,3)</td>
<td>33594.1</td>
<td>33594.1</td>
<td>33630.1</td>
</tr>
</tbody>
</table>

5.3.5 Model Residuals

A so-called residual is the difference between an observation and its forecast. In forecasting a time series, residuals are calculated from a one-step forecast. A one-step forecast is based on all observations from the start of the series until the previous observation to which the forecast applies to. Thus the number of data points used to calculate the one-step forecast increases as the forecast proceeds through the time series. An alternative is cross-sectional forecasting which uses all the points in the data set except the observation being predicted.

Knowledge of the residuals from the application of a model is important in establishing the validity of the model. There are two essential and two valuable properties that can be established by inspecting the model residuals. A good method of forecasting will produce a model in which the residuals are uncorrelated and have a zero mean. If a forecasting method doesn’t comply with these two properties it can be improved upon.
Correlation in residuals means that information is present in them that the model has missed and a non-zero mean is evidence of bias in the forecast. Adjusting for bias is straightforward, the mean value observed in the residuals can simply be added to all forecasts. Looking at Figure 5.7 it can be seen that the mean of the residuals is close to zero and this model doesn’t have any bias. Figure 5.8 is the plot of the residuals of the ARIMA model applied to the FTSE data set. The lower order lags are all within the confidence boundaries and is indicative of a good model.

Figure 5.7: The residuals after applying the ARIMA(2,1,3) model to the FTSE data set.

Figure 5.8: ACF plot of the residuals after applying the ARIMA(2,1,3) model to the FTSE data set.

Two additional properties of the residuals that are desirable, though not necessary, are constant variance and normal distribution. If these two conditions are met, the
calculation of the prediction interval in the forecast step is easier. From Figure 5.7 it can be seen that the residuals have relatively constant variance and from Figure 5.9, a histogram of the residuals, it can be seen that they are normally distributed.

Consideration of the ACF plots provides evidence for auto-correlation. However a more formal approach is to consider auto-correlation values together as a group as opposed to individually. The Box-Ljung portmanteau test is just one such approach and Table 5.7 lists the results of the Box-Ljung portmanteau test being applied to the residuals of the ARIMA(2,1,3) model. A large p-value is indicative of white noise and is the desirable situation for a good ARIMA model. Taking all the evidence together the ARIMA(2,1,3) model appears a good option for the FTSE data set.

Table 5.7: Box Ljung test of FTSE 100 ARIMA model residuals.

<table>
<thead>
<tr>
<th></th>
<th>p-value</th>
<th>x-squared</th>
<th>df</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARIMA(2,1,3)</td>
<td>0.2328</td>
<td>20</td>
<td>24</td>
</tr>
</tbody>
</table>

5.3.6 Calculate forecast

Finally, after developing a model that meets the previous criteria a forecast can be generated. Table 5.8 shows the one-step forecast produced when the ARIMA(2,1,3) model developed in the previous section is applied to the FTSE data set.
Table 5.8: One-step ahead forecast for FTSE 100 generated from ARIMA(2,1,3) model.

<table>
<thead>
<tr>
<th>Date</th>
<th>Open</th>
<th>High</th>
<th>Low</th>
<th>Close</th>
<th>Forecast</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/12/2013</td>
<td>6585</td>
<td>6617</td>
<td>6577</td>
<td>6607</td>
<td>6560</td>
</tr>
<tr>
<td>23/12/2013</td>
<td>6607</td>
<td>6679</td>
<td>6606</td>
<td>6679</td>
<td>6598</td>
</tr>
<tr>
<td>24/12/2013</td>
<td>6679</td>
<td>6712</td>
<td>6672</td>
<td>6694</td>
<td>6666</td>
</tr>
<tr>
<td>27/12/2013</td>
<td>6694</td>
<td>6754</td>
<td>6694</td>
<td>6751</td>
<td>6692</td>
</tr>
<tr>
<td>30/12/2013</td>
<td>6751</td>
<td>6768</td>
<td>6718</td>
<td>6731</td>
<td>6743</td>
</tr>
<tr>
<td>31/12/2013</td>
<td>6731</td>
<td>6757</td>
<td>6731</td>
<td>6749</td>
<td>6730</td>
</tr>
</tbody>
</table>

5.4 Automatic Generation of ARIMA Models

As explained previously the automatic ARIMA modelling algorithm in the R forecast package, auto.arima, automates steps 3 to 5 in the general steps used in the modelling process as outlined in section 5.2. The function uses a variation of the Hyndman and Khandakar algorithm which obtains an ARIMA model by the minimisation of the AICc and combination with unit root tests. KPSS tests are used to establish the number of differences, d, required to get a stationary time series. The p and q values are then obtained by choosing the model that minimises the AICc for the differenced data.

The results of passing the indice data sets to the auto.arima function can be seen in Table 5.9. For the FTSE data set the automatic procedure selects the ARIMA(2,1,3) as being the most appropriate, which matches the conclusion of the work from the manual model selection process described earlier in section 5.3.

Table 5.9: ARIMA models chosen to forecast future values in the national indice data sets.

<table>
<thead>
<tr>
<th>Market</th>
<th>ARIMA Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>ARIMA(3,1,3)</td>
</tr>
<tr>
<td>CAC</td>
<td>ARIMA(2,1,3)</td>
</tr>
<tr>
<td>FTSE</td>
<td>ARIMA(2,1,3)</td>
</tr>
<tr>
<td>Dow</td>
<td>ARIMA(1,1,2)</td>
</tr>
<tr>
<td>Nikkei</td>
<td>ARIMA(2,1,3)</td>
</tr>
<tr>
<td>AORD</td>
<td>ARIMA(1,1,0)</td>
</tr>
</tbody>
</table>

5.5 Trading the ARIMA Models

Having developed forecasts based on ARIMA models these can be passed into a trading system. Two ideas are presented here, in the first the previous closing price is compared against the prediction and if it is lower than the forecast a long trade is entered. This
first system will be referred to as System 1. In the second algorithm the current forecast is compared with the previous prediction. When the previous forecast value is lower than the current prediction the system trades long. This algorithm will be referred to as System 2.

The data sets containing fourteen years of indice data was divided into a training set, containing the first ten years of data, and a test set holding the remaining four years worth of data. Models were trained on the training sets before being applied to the unseen data in the test sets.

5.5.1 System 1 - Close Price vs Forecast

Using the ARIMA models listed in Table 5.9 a series of amended data sets were generated by applying the models to the national indice data sets used throughout this study. The amended data sets contained the original Date, Open, High, Low and Close attributes plus a new one called Forecast, in a similar manner to the data seen in Table 5.8. Table 5.10 are results produced from passing the newly generated data sets to the algorithm listed in Appendix A section A.2.2. This system uses the relative position of the close price and the forecast to determine the direction of the trade. If the forecast is higher than the close a long trade is made the next day and when the prediction is lower than the close price a short trade is made.

Table 5.10: Results from trading System 1 using the forecasts generated by the ARIMA models.

<table>
<thead>
<tr>
<th>Mkt</th>
<th>LongPL</th>
<th>ShortPL</th>
<th>L Win %</th>
<th>Av L PL</th>
<th>S Win %</th>
<th>Av S PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>-1285</td>
<td>-2522</td>
<td>50</td>
<td>-5</td>
<td>42</td>
<td>-9</td>
</tr>
<tr>
<td>CAC</td>
<td>872</td>
<td>167</td>
<td>57</td>
<td>3</td>
<td>51</td>
<td>1</td>
</tr>
<tr>
<td>FTSE</td>
<td>990</td>
<td>-249</td>
<td>53</td>
<td>4</td>
<td>46</td>
<td>-1</td>
</tr>
<tr>
<td>Dow</td>
<td>1539</td>
<td>-3356</td>
<td>56</td>
<td>7</td>
<td>47</td>
<td>-11</td>
</tr>
<tr>
<td>Nikkei</td>
<td>4268</td>
<td>3071</td>
<td>53</td>
<td>21</td>
<td>49</td>
<td>13</td>
</tr>
<tr>
<td>AORD</td>
<td>635</td>
<td>-247</td>
<td>55</td>
<td>2</td>
<td>49</td>
<td>-1</td>
</tr>
</tbody>
</table>

5.5.2 System 2 - Forecast vs Previous Forecast

Table 5.11 lists the results from passing the amended indice data sets with the forecasts generated from the auto.arima function, described in the previous section, to the System 2 algorithm. The R code of this system can be seen in Appendix A section A.2.3. System 2 uses the relative values of the forecasts themselves to decide which direction to trade. If the prediction is higher than the previous day’s prediction a long trade is initiated...
the following day and in the opposite circumstances when the previous forecast is higher than the current forecast a short trade is made.

Table 5.11: Results from trading System 2 using the forecasts generated by the ARIMA models.

<table>
<thead>
<tr>
<th>Mkt</th>
<th>LongPL</th>
<th>ShortPL</th>
<th>L Win %</th>
<th>Av L PL</th>
<th>S Win %</th>
<th>Av S PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>733</td>
<td>-505</td>
<td>55</td>
<td>3</td>
<td>46</td>
<td>-2</td>
</tr>
<tr>
<td>CAC</td>
<td>545</td>
<td>-80</td>
<td>53</td>
<td>2</td>
<td>47</td>
<td>0</td>
</tr>
<tr>
<td>FTSE</td>
<td>941</td>
<td>-383</td>
<td>54</td>
<td>3</td>
<td>46</td>
<td>-2</td>
</tr>
<tr>
<td>Dow</td>
<td>2598</td>
<td>-2221</td>
<td>55</td>
<td>9</td>
<td>46</td>
<td>-10</td>
</tr>
<tr>
<td>Nikkei</td>
<td>179</td>
<td>-916</td>
<td>50</td>
<td>1</td>
<td>47</td>
<td>-4</td>
</tr>
<tr>
<td>AORD</td>
<td>811</td>
<td>-117</td>
<td>53</td>
<td>3</td>
<td>46</td>
<td>0</td>
</tr>
</tbody>
</table>

5.6 Hybrid ARIMA Models

A hybrid ARIMA model is one in which the moving averages of a stationary data set (possibly a non-stationary data set that has been differenced) are combined with data mining learners other than regression. A variety of combinations were tried, with a combination of the three previous closing prices and differences and the four previous moving averages providing good results. Possible learners include k-Nearest Neighbour (k-NN) algorithms, Artificial Neural Networks (ANN) and Support Vector Machines (SVM). RapidMiner, an open source data mining tool is a powerful solution for building hybrid ARIMA models. Figure 5.10 shows the RapidMiner process used to generate hybrid ARIMA models. The Validation operator in the model below can hold a variety of learners depending upon the task and data types involved. The various components in Figure 5.10 are as follows:

- Read CSV - reads in the appropriate data set.
- Select Attribute (1) - selects the attribute that will be processed in the following steps.
- Rename - renames the attribute selected in Select Attribute (1) to “attr1” which is then used in the rest of the steps. This component is used to make it easy to change the attribute without having to rename all the subsequent steps.
- Moving Average - calculates a moving average of the time series (see section 2.2.1.1 for details.) This provides the q in ARIMA(p,d,q) models.
- Differentiate - calculates the difference in the time series and provides the d in ARIMA(p,d,q) models.
• Lag - creates lag variables which are values of the attribute (the attribute itself, the moving average or the difference value) at earlier points in the time series. The three previous closing prices and differences and the four previous moving averages were typically used.

• Select Attribute (2) - selects the attributes that will be passed to the validation block, including the number of previous moving averages and differences.

• Set Role - sets an attribute as the label to be predicted.

![Image](image1.png)

Figure 5.10: Rapid Miner hybrid ARIMA process.

Figure 5.11 shows the cross-validation operator of the hybrid ARIMA Rapid miner process. This operator can hold alternative learners other than the standard regression operator found in ARIMA models. In the diagram there is an Artificial Neural Network (ANN) operator shown, other options include k-Nearest Neighbour (k-NN) and Support Vector Machine (SVM) operators.

![Image](image2.png)

Figure 5.11: Rapid Miner cross-validation operator within the hybrid ARIMA process.

Using the hybrid ARIMA methods two types of predictions were carried out. Firstly, in section 5.7 the actual closing price of the following observation was predicted, which is a numeric label. This was done by combining ANN and k-NN with ARIMA, as these learners can output numeric class labels. Secondly, in section 5.8 the more general situation of whether the market increased or fell in value over the course of the day, was
predicted. In this case there are two options, either the market moved up or down. For this second situation a combination of ARIMA with ANN, k-NN and SVM was used, as all three can forecast a binary label.

5.7 Predicting Closing Price

As mentioned previously ARIMA and hybrid ARIMA models were used to predict either the value of the one-step ahead close price or the binary value of whether the market moved up or down. In this section the ability of hybrid ARIMA models to forecast the future price of financial markets (as opposed to the general direction up or down) is explored.

5.7.1 ARIMA/Artificial Neural Networks (ANN)

An ARIMA/ANN method was used to generate predictions for the closing price of the indice data sets under study. As described in section 5.6, previous values of the label (closing price), along with past values for the difference and moving averages are passed to an ANN learner within a rapid miner process. Artificial Neural Networks can be used to predict categorical or numeric labels, but can only use numeric inputs. They are slow to learn, but their strength lies in their ability to model complex patterns. Essentially they are designed to mimic the human brain by the use of layers of neurons with connections between them. The neurons are found in input and output layers as well as optional hidden layers. The model is constructed by applying weights to the connections which are used to calculate the label.

Rapid miner implements ANN as a feed-forward neural network trained by back propagation. Feed-forward refers to the fact that information only moves forward from the input nodes to the output neurons. Back propagation is an algorithm in which errors are fed back into the system so that the algorithm can adjust the connection weights between nodes until the error converges to some state. Typically the best results were obtained from using a small learning rate and momentum and using a hidden layer of neurons.

For each data set applying the hybrid model produces a new one-step forecast attribute, in a similar manner to the forecast attribute seen in Table 5.8, which can be used in the System 1 and 2 algorithms previously introduced in section 5.5. Table 5.12 are the results generated by passing the output of the ARIMA/ANN models to trading System 1, which compares the previous closing price with the current forecast.
Table 5.12: Results from passing closing price predictions from hybrid ARIMA/ANN model to System 1.

<table>
<thead>
<tr>
<th>Mkt</th>
<th>LongPL</th>
<th>ShortPL</th>
<th>L Win %</th>
<th>Av L PL</th>
<th>S Win %</th>
<th>Av S PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>-446</td>
<td>-645</td>
<td>53</td>
<td>-1</td>
<td>46</td>
<td>-2</td>
</tr>
<tr>
<td>CAC</td>
<td>532</td>
<td>1527</td>
<td>55</td>
<td>2</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>FTSE</td>
<td>625</td>
<td>-624</td>
<td>51</td>
<td>1</td>
<td>45</td>
<td>-2</td>
</tr>
<tr>
<td>Dow</td>
<td>2846</td>
<td>-3979</td>
<td>55</td>
<td>5</td>
<td>45</td>
<td>-9</td>
</tr>
<tr>
<td>Nikkei</td>
<td>913</td>
<td>2039</td>
<td>54</td>
<td>2</td>
<td>55</td>
<td>4</td>
</tr>
<tr>
<td>AORD</td>
<td>-3036</td>
<td>-371</td>
<td>54</td>
<td>-5</td>
<td>51</td>
<td>-1</td>
</tr>
</tbody>
</table>

Table 5.13 are the results of passing the output of the ARIMA/ANN models to trading System 2, which compares the value of the current forecast with the previous one.

Table 5.13: Results from passing closing price predictions from hybrid ARIMA/ANN model to System 2.

<table>
<thead>
<tr>
<th>Mkt</th>
<th>LongPL</th>
<th>ShortPL</th>
<th>L Win %</th>
<th>Av L PL</th>
<th>S Win %</th>
<th>Av S PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>3283</td>
<td>3110</td>
<td>56</td>
<td>6</td>
<td>49</td>
<td>7</td>
</tr>
<tr>
<td>CAC</td>
<td>-1832</td>
<td>-816</td>
<td>49</td>
<td>-3</td>
<td>46</td>
<td>-2</td>
</tr>
<tr>
<td>FTSE</td>
<td>1092</td>
<td>-182</td>
<td>52</td>
<td>2</td>
<td>48</td>
<td>0</td>
</tr>
<tr>
<td>Dow</td>
<td>3829</td>
<td>-2942</td>
<td>54</td>
<td>7</td>
<td>43</td>
<td>-7</td>
</tr>
<tr>
<td>Nikkei</td>
<td>-4485</td>
<td>-3229</td>
<td>48</td>
<td>-9</td>
<td>50</td>
<td>-7</td>
</tr>
<tr>
<td>AORD</td>
<td>-2783</td>
<td>-137</td>
<td>51</td>
<td>-5</td>
<td>47</td>
<td>0</td>
</tr>
</tbody>
</table>

5.7.2 ARIMA/k-Nearest Neighbour (k-NN)

An ARIMA/k-NN method was used to generate predictions for the closing price of the indice data sets. The k-Nearest Neighbour algorithm operates by comparing the current set of attributes to others in the data set and finding ones that are “close” to it. Closeness is usually defined by a distance measure, such as Euclidean, after the attributes have been stored in a n-dimensional pattern space. The k closest neighbours are selected and the most common class of these used to classify the label. In a similar manner to the ANN modelling of section 5.7.1, lag variables of the close price (label attribute to be forecast), moving average and differences of the close price were passed to a k-NN learner in Rapid Miner in order to predict the one-step ahead forecast.

The k-NN learner has only a small number of parameters such as k, the number of close neighbours to be considered and the types of measures to be used. Fifteen was found to be a good value for k and either euclidean or cosine similarity a good choice for the distance measure. Table 5.14 shows the results of passing data sets containing forecasts generated with the hybrid ARIMA/k-NN to trading System 1. Table 5.15
shows the results of passing data sets containing forecasts generated with the hybrid ARIMA/k-NN to trading System 2.

Table 5.14: Results from passing closing price predictions from hybrid ARIMA/k-NN model to System 1.

<table>
<thead>
<tr>
<th>Mkt</th>
<th>LongPL</th>
<th>ShortPL</th>
<th>L Win %</th>
<th>Av L PL</th>
<th>S Win %</th>
<th>Av S PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>12</td>
<td>-174</td>
<td>52</td>
<td>0</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>CAC</td>
<td>-249</td>
<td>747</td>
<td>52</td>
<td>0</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>FTSE</td>
<td>699</td>
<td>-550</td>
<td>54</td>
<td>1</td>
<td>50</td>
<td>-1</td>
</tr>
<tr>
<td>Dow</td>
<td>4436</td>
<td>-2389</td>
<td>57</td>
<td>11</td>
<td>46</td>
<td>-4</td>
</tr>
<tr>
<td>Nikkei</td>
<td>-66</td>
<td>1060</td>
<td>48</td>
<td>0</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>AORD</td>
<td>497</td>
<td>3162</td>
<td>53</td>
<td>1</td>
<td>50</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 5.15: Results from passing closing price predictions from hybrid ARIMA/k-NN model to System 2.

<table>
<thead>
<tr>
<th>Mkt</th>
<th>LongPL</th>
<th>ShortPL</th>
<th>L Win %</th>
<th>Av L PL</th>
<th>S Win %</th>
<th>Av S PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>489</td>
<td>731</td>
<td>54</td>
<td>1</td>
<td>47</td>
<td>2</td>
</tr>
<tr>
<td>CAC</td>
<td>-966</td>
<td>50</td>
<td>50</td>
<td>-2</td>
<td>47</td>
<td>0</td>
</tr>
<tr>
<td>FTSE</td>
<td>-388</td>
<td>-1662</td>
<td>50</td>
<td>-1</td>
<td>45</td>
<td>-4</td>
</tr>
<tr>
<td>Dow</td>
<td>2969</td>
<td>-3411</td>
<td>54</td>
<td>5</td>
<td>43</td>
<td>-9</td>
</tr>
<tr>
<td>Nikkei</td>
<td>-2916</td>
<td>-1660</td>
<td>47</td>
<td>-6</td>
<td>49</td>
<td>-4</td>
</tr>
<tr>
<td>AORD</td>
<td>-3449</td>
<td>-804</td>
<td>52</td>
<td>-6</td>
<td>48</td>
<td>-2</td>
</tr>
</tbody>
</table>

5.8 Predicting Up or Down - Categorical Label

In this section the ability of hybrid ARIMA models to forecast whether a financial market will rise or fall is investigated. A categorical attribute taking values “U” and “D”, representing whether the market moved up (“U”) or down (“D”) was introduced into the indice data sets depending upon which way the market moved that day. The final six observations of the FTSE data set with the binary label added can be seen in Table 5.16. Hybrid ARIMA models using ANN, k-NN and SVM learners, were used to generate one-step ahead forecasts for this categorical label.

Table 5.16: FTSE 100 data set with “U” and “D” label introduced.

<table>
<thead>
<tr>
<th>Date</th>
<th>Open</th>
<th>High</th>
<th>Low</th>
<th>Close</th>
<th>U/D</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/12/2013</td>
<td>6585</td>
<td>6617</td>
<td>6577</td>
<td>6607</td>
<td>U</td>
</tr>
<tr>
<td>23/12/2013</td>
<td>6607</td>
<td>6679</td>
<td>6606</td>
<td>6679</td>
<td>U</td>
</tr>
<tr>
<td>24/12/2013</td>
<td>6679</td>
<td>6712</td>
<td>6672</td>
<td>6694</td>
<td>U</td>
</tr>
<tr>
<td>27/12/2013</td>
<td>6694</td>
<td>6754</td>
<td>6694</td>
<td>6751</td>
<td>U</td>
</tr>
<tr>
<td>30/12/2013</td>
<td>6751</td>
<td>6768</td>
<td>6718</td>
<td>6731</td>
<td>D</td>
</tr>
<tr>
<td>31/12/2013</td>
<td>6731</td>
<td>6757</td>
<td>6731</td>
<td>6749</td>
<td>U</td>
</tr>
</tbody>
</table>
5.8.1 ARIMA/Artificial Neural Networks (ANN)

Lag values from the moving average of the closing price, the difference values between consecutive observations and the closing price were passed to an ANN learner to create one-step ahead forecasts of the “U” and “D” values. The R code for a trading system using the forecasts from a hybrid model can be seen in Appendix A section A.2.4. The algorithm simply uses the prediction from the hybrid ARIMA model to decide whether to trade long or short. Table 5.17 lists the results from the trading system using the hybrid ARIMA/ANN forecasts.

Table 5.17: Results from a trading system using the forecast of categorical label “U/D” from hybrid ARIMA/ANN model.

<table>
<thead>
<tr>
<th>Mkt</th>
<th>LongPL</th>
<th>ShortPL</th>
<th>L Win %</th>
<th>Av L PL</th>
<th>S Win %</th>
<th>Av S PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>2321</td>
<td>2122</td>
<td>54</td>
<td>6</td>
<td>47</td>
<td>4</td>
</tr>
<tr>
<td>CAC</td>
<td>102</td>
<td>1098</td>
<td>52</td>
<td>0</td>
<td>49</td>
<td>2</td>
</tr>
<tr>
<td>FTSE</td>
<td>1400</td>
<td>151</td>
<td>53</td>
<td>2</td>
<td>49</td>
<td>0</td>
</tr>
<tr>
<td>Dow</td>
<td>5218</td>
<td>-1607</td>
<td>55</td>
<td>6</td>
<td>45</td>
<td>-10</td>
</tr>
<tr>
<td>Nikkei</td>
<td>234</td>
<td>1360</td>
<td>53</td>
<td>12</td>
<td>51</td>
<td>1</td>
</tr>
<tr>
<td>AORD</td>
<td>-2712</td>
<td>-47</td>
<td>52</td>
<td>-3</td>
<td>25</td>
<td>-12</td>
</tr>
</tbody>
</table>

5.8.2 ARIMA/k-Nearest Neighbour (k-NN)

In a similar manner to section 5.8.1, an ARIMA/k-NN model was also employed in an attempt to predict the categorical label indicating whether the financial markets would move up or down. The forecasts produced from these hybrid models were also applied to the trading algorithms listed in A section A.2.4. Table 5.18 lists the trading results from this combination.

Table 5.18: Results from a trading system using the forecast of categorical label “U/D” from hybrid ARIMA/k-NN model.

<table>
<thead>
<tr>
<th>Mkt</th>
<th>LongPL</th>
<th>ShortPL</th>
<th>L Win %</th>
<th>Av L PL</th>
<th>S Win %</th>
<th>Av S PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>-1553</td>
<td>-1752</td>
<td>54</td>
<td>-3</td>
<td>47</td>
<td>-4</td>
</tr>
<tr>
<td>CAC</td>
<td>270</td>
<td>1265</td>
<td>52</td>
<td>1</td>
<td>49</td>
<td>2</td>
</tr>
<tr>
<td>FTSE</td>
<td>1764</td>
<td>515</td>
<td>55</td>
<td>3</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>Dow</td>
<td>3211</td>
<td>-3614</td>
<td>55</td>
<td>6</td>
<td>44</td>
<td>-8</td>
</tr>
<tr>
<td>Nikkei</td>
<td>2707</td>
<td>3834</td>
<td>50</td>
<td>6</td>
<td>52</td>
<td>8</td>
</tr>
<tr>
<td>AORD</td>
<td>748</td>
<td>3413</td>
<td>54</td>
<td>1</td>
<td>50</td>
<td>7</td>
</tr>
</tbody>
</table>

As the results from Table 5.18 were good, the algorithm was re-run but this time a stop loss was introduced. A stop loss of 100 points was applied to all the markets and the amended results can be seen in Table 5.19. In a similar manner as encountered
previously, the use of the stop loss was beneficial for all the markets except the Dow in which case it had a large detrimental affect.

Table 5.19: Results from a trading system with a stop loss using the forecast of categorical label "U/D" from hybrid ARIMA/k-NN model.

<table>
<thead>
<tr>
<th>Mkt</th>
<th>LongPL</th>
<th>ShortPL</th>
<th>L Win %</th>
<th>Av L PL</th>
<th>S Win %</th>
<th>Av S PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>-430</td>
<td>-1444</td>
<td>53</td>
<td>-1</td>
<td>47</td>
<td>-4</td>
</tr>
<tr>
<td>CAC</td>
<td>203</td>
<td>1326</td>
<td>52</td>
<td>0</td>
<td>49</td>
<td>2</td>
</tr>
<tr>
<td>FTSE</td>
<td>1919</td>
<td>526</td>
<td>54</td>
<td>4</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>Dow</td>
<td>5475</td>
<td>-1922</td>
<td>51</td>
<td>11</td>
<td>42</td>
<td>-4</td>
</tr>
<tr>
<td>Nikkei</td>
<td>4021</td>
<td>2804</td>
<td>48</td>
<td>9</td>
<td>49</td>
<td>6</td>
</tr>
<tr>
<td>AORD</td>
<td>570</td>
<td>3424</td>
<td>53</td>
<td>1</td>
<td>50</td>
<td>7</td>
</tr>
</tbody>
</table>

5.8.3 ARIMA/Support Vector Machine (SVM)

ARIMA was also married with a SVM learner in order to predict the categorical value, “U” or “D”. SVMs are linear classifiers that can only operate with binary class labels and thus assign observations in a data set to one of two options, in this case “U” or “D”.

Support vector machines operate by finding the straight line that dissects a data set such that the points close to the dividing line are as far away from it as possible. In high dimensional data sets the dividing lines can be considered as a set of hyperplanes in a high dimensional space. The algorithm works by choosing the hyperplanes that are furthest from the boundary data points, which are known as the support vectors. This intuitively would provide the best classification between two sets of data points. Observations that are classified into the wrong class are known as slack variables, the number of which increases as width of the dividing margin increases.

Figure 5.12: SVM margins and slack variables.
Figure 5.12 illustrates the margin calculated from a SVM between two classes of observations, and the presence of a wrongly classified slack variable. Therefore in SVMs there is a trade off between a narrow margin with a small number of slack margins, which could represent over-fitting, and a wider margin with more wrongly classified data points. In the Rapid Miner SVM operator, the parameter “C” is a cost function, that applies a cost to slack variables. If this parameter is set to a high value there is a high cost applied to the creation of a slack variable and therefore the model produces tight margins and risks over-fitting the model. For low values of C, models with wider margins with more slack variables are produced.

In order to allow for non-linear boundaries between classes non-linear kernel functions are used in SVM. These map the original data set into a data set with a larger number of dimensions which can then be split with a linear function.

Table 5.20 lists the results of passing forecasts made using hybrid ARIMA/SVM models to the trading algorithm listed in A section A.2.4. Typically small values were used for the cost parameter in Rapid Miner and a radial non-linear kernel function applied.

<table>
<thead>
<tr>
<th>Mkt</th>
<th>LongPL</th>
<th>ShortPL</th>
<th>L Win %</th>
<th>Av L PL</th>
<th>S Win %</th>
<th>Av S PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>-123</td>
<td>-322</td>
<td>53</td>
<td>0</td>
<td>46</td>
<td>-1</td>
</tr>
<tr>
<td>CAC</td>
<td>-1607</td>
<td>-612</td>
<td>49</td>
<td>-4</td>
<td>47</td>
<td>-1</td>
</tr>
<tr>
<td>FTSE</td>
<td>2115</td>
<td>866</td>
<td>54</td>
<td>5</td>
<td>49</td>
<td>1</td>
</tr>
<tr>
<td>Dow</td>
<td>2138</td>
<td>-4686</td>
<td>57</td>
<td>10</td>
<td>45</td>
<td>-6</td>
</tr>
<tr>
<td>Nikkei</td>
<td>9</td>
<td>1135</td>
<td>48</td>
<td>0</td>
<td>51</td>
<td>2</td>
</tr>
<tr>
<td>AORD</td>
<td>-2364</td>
<td>301</td>
<td>53</td>
<td>-4</td>
<td>49</td>
<td>1</td>
</tr>
</tbody>
</table>
Chapter 6

Analysis

6.1 Introduction

In chapters 4 and 5 a wide variety of analytical techniques were applied to a range of time series data sets. In Chapter 4 a number of trading algorithms were developed based on technical analysis indicators, with the intention of automating the decision of whether to buy or sell a market. For comparison purposes, two simple so called “naive” systems were explored to act as a baseline against which the technical analysis indicators could be compared. The technical indicators were grouped together into their general area of applicability, namely trend detection indicators, reversal, momentum and candlestick indicators.

Chapter 5 continued the exploration of financial time series through the use of exponential smoothing, ARIMA and hybrid ARIMA techniques. The generated models were used to create one-step ahead forecasts which were then added to the original data sets. These amended data sets were then fed into trading algorithms which used the forecast values to make buying decisions.

6.2 Technical Analysis

6.2.1 Baseline Systems

Initially two simple, naive systems were explored so that they could be used as a baseline against which the developed predictive models could be compared. These systems were
the Naive Long System which mirrors a buy and hold strategy and a Naive Reversing System which simply trades in the opposite direction to the previous days market movement.

The first baseline system tried was the Naive Long system in which a market buy is placed each day and is similar to the so-called “Buy and Hold” technique. The assumption here is that the market rises over time and if an investor simply holds a security it will eventually generate a profit. The total profit is the price at the start, in this case the data set started in 2000, subtracted from the price at the end of the period, which in this case was the end of 2013.

The first iteration of the algorithm placed a buy at the start of the trading session and closed it at the end and thus the system was out of the market overnight. This resulted in significant discrepancies from the returns expected from a buy and hold system. Table 6.1 lists the expected returns from a Buy and Hold system over this period, with the Difference column being the profit or loss over the time.

<table>
<thead>
<tr>
<th>Date</th>
<th>Start 2000</th>
<th>End 2013</th>
<th>Difference</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>6961</td>
<td>9552</td>
<td>+2591</td>
<td>+37</td>
</tr>
<tr>
<td>CAC</td>
<td>6024</td>
<td>4250</td>
<td>-1774</td>
<td>-29</td>
</tr>
<tr>
<td>FTSE</td>
<td>6930</td>
<td>6749</td>
<td>-181</td>
<td>+3</td>
</tr>
<tr>
<td>Dow</td>
<td>11501</td>
<td>16576</td>
<td>+5075</td>
<td>+44</td>
</tr>
<tr>
<td>Nikkei</td>
<td>18937</td>
<td>16291</td>
<td>-2646</td>
<td>-14</td>
</tr>
<tr>
<td>AORD</td>
<td>3152</td>
<td>5353</td>
<td>+2201</td>
<td>+70</td>
</tr>
</tbody>
</table>

From simply trading long during market hours the DAX generated a loss as opposed to the 2591 profit expected, likewise the CAC showed a much larger loss than expected and the Nikkei resulted in a large loss when a small loss was expected. The Dow, FTSE and AORD were similar to the expected values. The discrepancies in the returns between the trading algorithm and a Buy and Hold approach was due to the fact that the algorithm opened and closed trades each day as opposed to simply opening the trade and waiting several years. This first algorithm was simply trading within market hours, approximately 8am to 5pm local time, and was not in the market for the full 24 hours of the day.

Changing the algorithm such that the trades ran from the market close time until the close time of the following day and thus covered the full 24 hour period resulted in system results that matched those expected from a buy and hold approach. Clearly the discrepancies from the first algorithm were due to the relative amounts the markets moved during the day as opposed to during the “out of hours” trading. There is a slight
bias for the markets to move upwards overnight and over the course of the study (14 years) adds up to significant values.

The second naive system was termed the “Naive Reversing” system and simply places a trade today in the opposite direction from the previous day. This idea produced reasonable returns, with every market making money. From these results it can be concluded that the markets have a tendency to "flip flop" and reverse back on themselves, and the phenomena of market reverses is well understood. This second concept produced far better results than the first and was thus used as the primary basis of comparison for the algorithms and systems developed from technical indicators and time series methods. For convenience the results from this system are reproduced in Table 6.2.

Table 6.2: Results from a naive trading system which simply trades in the opposite direction to the previous day’s movement.

<table>
<thead>
<tr>
<th>Mkt</th>
<th>LongPL</th>
<th>ShortPL</th>
<th>L Win %</th>
<th>Av L PL</th>
<th>S Win %</th>
<th>Av S PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>947</td>
<td>3131</td>
<td>53</td>
<td>1</td>
<td>49</td>
<td>2</td>
</tr>
<tr>
<td>CAC</td>
<td>940</td>
<td>7810</td>
<td>53</td>
<td>1</td>
<td>53</td>
<td>4</td>
</tr>
<tr>
<td>FTSE</td>
<td>4284</td>
<td>4115</td>
<td>53</td>
<td>3</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>Dow</td>
<td>15799</td>
<td>6047</td>
<td>56</td>
<td>10</td>
<td>49</td>
<td>3</td>
</tr>
<tr>
<td>Nikkei</td>
<td>2324</td>
<td>20486</td>
<td>51</td>
<td>1</td>
<td>54</td>
<td>12</td>
</tr>
<tr>
<td>AORD</td>
<td>1264</td>
<td>237</td>
<td>53</td>
<td>1</td>
<td>48</td>
<td>0</td>
</tr>
</tbody>
</table>

6.2.2 Trend Detection

The first group of the technical analysis indicators studied were the trend detection indicators. Identification of trend direction and strength is very important in the world of financial trading and one of the most widely encountered phrases is "the trend is your friend", as most authorities advocate trading in the direction of the trend. (In fact on a recent webinar it was claimed that 80% of all money made is made trading in the direction of the trend.) Well known indicators that purport to assist the trader in identifying trends are the simple moving average (SMA), the moving average convergence/divergence indicator (MACD) and the Aroon indicator.

The use of simple moving average is wide-spread in the financial markets. Market participants track moving averages or even more than one and make a decision which way to trade based on the position of the current price relative to it. Popular values to use in the SMA are 25, 50 and 200 for the look back period. The results of a trading system based on SMA is presented in Table 4.5 of Chapter 4. The algorithm places a buy trade if the current price is above the SMA and a sell trade if it is below it.
Results are mixed from using the SMA, with some markets producing positive results and some ending in losses. The German DAX and Australian AORD produce positive results across all the SMA values with returns from trading short (predicting the market will decline) doing best. The Japanese Nikkei and French CAC display different behaviour in that all the SMA values tried produce negative results in trying to predict long trades but positive returns when attempting to predict short trades. The UK’s FTSE 100 is different again, producing negative results across the board. Finally, the Dow produces positive results for trades on the long side but losses for trading short.

In an attempt to improve the returns from the trading system a stop loss was introduced. Comparing Tables 4.5 and 4.6 of Chapter 4 it can be seen that applying the stop loss has been on the whole beneficial to the results obtained, with the exception of those from the Dow which were negatively impacted. Essentially losing trades have been truncated while winning trades have been left to develop. This general pattern of a stop loss being beneficial to all the markets except the US Dow was seen multiple times with the systems tested.

The second trend detection indicator explored was the Moving Average Convergence Divergence (MACD) indicator, full details of which can be found in section B.1 of Appendix B. The MACD can generally be used two ways, as a trend detection indicator and as an over-bought/over-sold indicator in which case traders use it to identify potential market reversals. In this section the indicator was used as a trend detector and the results from a system based on the MACD indicator can be seen in Table 4.7 in Chapter 4. The algorithm trades long when the value of MACD is greater than the value of the signal line, see Appendix A section A.1.3.2 for details of the R code used. The results are not very impressive, only the Nikkei producing reasonable profits, although they wouldn’t beat the baseline Naive Reversing system.

The final trend detection indicator examined was Aroon. This indicator measures the number of intervals since the previous high or low within a certain time window. The algorithms presented here used a time window of 20 days. If the current day was the highest price in the last 20 days trading, the indicator would take a value of 100 and for each following day that doesn’t make a new high the indicator falls by 5 (100 divided by the lag period which is 20). Thus if the highest price was four days ago the AroonUp value would be 80. The opposite situation occurs with regard to the low price. A value of 70 or above for the AroonUp is indicative of a upward trending market and likewise a value of 70 and above for AroonDn suggests a falling market.

The results from an algorithm using the Aroon indicator can be seen in Table 4.8 of Chapter 4. Overall the results are encouraging with the DAX, FTSE, Dow and AORD all producing positive returns for both long and short trades, while the CAC and Nikkei
are positive when trading short. Table 6.3 lists the values derived from the Aroon system with those from the baseline Reversing system (see Chapter 4 section 4.2.2) subtracted. Because the Aroon system doesn’t execute trades each day it only makes sense to compare the average daily returns as opposed to the total returns. As can be seen from Table 6.3, compared with the baseline system for some markets the Aroon indicator outperforms the baseline while for others it is worse, notably the Nikkei. Considering the second column in Table 6.3, “Diff in Mean Long PL” only the DAX and AORD outperformed the baseline reversing system in producing long winning trades. Alternatively, the system based on the Aroon indicator was superior in predicting winning short trades for all the markets except the Nikkei, as seen in the third column “Diff in Mean Short PL”.

Table 6.3: PL from Naive Reversing system subtracted from results generated by a trading system based on the Aroon indicator.

<table>
<thead>
<tr>
<th>Mkt</th>
<th>Diff in Mean Long PL</th>
<th>Diff in Mean Short PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CAC</td>
<td>-2</td>
<td>0</td>
</tr>
<tr>
<td>FTSE</td>
<td>-1</td>
<td>3</td>
</tr>
<tr>
<td>Dow</td>
<td>-3</td>
<td>0</td>
</tr>
<tr>
<td>Nikkei</td>
<td>-4</td>
<td>-2</td>
</tr>
<tr>
<td>AORD</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

The trading system based on the Aroon indicator was re-run with a stop loss value of 100. Overall the use of a stop loss improves the returns, with the exception of the Dow. One again using a stop loss with the Dow shows very marked negative impacts on profits. These results can be seen in 4.9 of Chapter 4.

6.2.3 Market Reversal Indicators

In this section two indicators that purport to assist in identifying market reversals are examined, namely the Parabolic Stop-and-Reverse (SAR) and the Moving Average Convergence Divergence (MACD) used as an over-bought/over-sold indicator.

The first market reversal indicator explored was the Parabolic Stop-and-Reverse (SAR), an indicator initially developed for traders who were always in the market with either long or short position. The SAR is used to judge when the position should be reversed from long to short or vice versa. The trading algorithm reported here trades each day (i.e. opens a trade at the start of the trading session and closes it out at the end) and makes a decision regarding the direction of the trade based on the SAR indicator. If the market opening is above the SAR a long trade is initiated and vice versa if the market is below the SAR value.
The results from the trading system based on the SAR can be seen in Table 4.11 of Chapter 4 and are very poor. Only the Nikkei trading short produces reasonable results, but these are much worse than the baseline Naive Reversing method introduced previously.

As previously mentioned the MACD indicator can be used as a market reversal indicator. Once the MACD value reaches its extreme values, the market is considered over-bought or over-sold and likely to reverse back on itself. The trading algorithm using this concept expects a market reversal once the MACD crosses above the 85% quantile (of the MACD range) or below the 15% quantile. Short trades are initiated once the MACD crosses above the 85% quantile value and short trades once it has passed below the 15% quantile. The results from this trading system can be seen in Table 4.12 and are very unimpressive being inferior to the baseline method.

Both market reversal indicators resulted in poor results. However, the trading horizon was short at just one day. Given the difficult task at hand, trying to pin point the reversal of a financial market perhaps a longer trading horizon may have helped. This might have allowed leeway in the timing and caught any reversals that may have occurred two or three days later. This is an area for future research.

6.2.4 Momentum Indicators

A third category of technical indicators are the momentum indicators, which are related to the trend detection indicators (Menkhoff et al., 2012). Two such indicators are studied here, the stochastic and the rate of change (ROC). The stochastic oscillator is one of the oldest and most widely used of the technical indicators. It measures the percentage position the current close is in relation to the high low range of the period of interest. For example the current close could be 80% of the way between the low and high of the last 10 days. Thus it has conceptual similarities to the Aroon indicator. The stochastic is usually represented by two lines %K which is the position of the price within this high low envelope described above, and %D a moving average of %K (see Appendix B section B.4 for more details).

The trading algorithm utilising the stochastic initiates long trades when %K is above %D and short trades when %K is below %D. Results from an algorithm implementing these ideas can be seen in Table 4.13 in Chapter 4. The results of this system are poor being significantly worse than the baseline Naive Reversing system.

The second momentum indicator is the Rate Of Change (ROC) indicator, and this is simply the difference between the current price and a price a certain number of days
previously. If this value is positive the market is considered to be trending up and the larger the value the greater the trending momentum. The results from an algorithm using these ideas is presented in Table 4.15 of Chapter 4. The results are positive but very modest and inferior to the baseline Reversing system.

6.2.5 Breakout systems

The fourth area of technical analysis explored the idea of trade signals being generated by a particular value from the previous day, so-called breakout systems. Two particular values are used as the trigger price for a trade, the previous day’s high/low or the 90% quantile of the minor move (see section 3.2.5 of Chapter 3).

The first idea explored was to use the previous time period’s high or low price as a trigger for a buy or sell. If the current day’s high price exceeded the previous day’s high price a long trade would be made and in a similar manner if today’s low price is lower than previous day’s low a short trade is initiated. Results from using the previous day’s high price or low price as a trigger to trade long or short can be seen in Table 4.16. Generally the results are very good with the exception of the Dow. These results can be linked to the data exploratory work shown in Table 3.6 of section 3.2.3. The best returns were generated in the Nikkei, a market which had the highest number of times closing outside the previous day’s high or low. Conversely, the lowest ranked market in terms of closing outside yesterday’s high low range was the Dow, and this was the one market that produced negative results in the breakout system. Table 6.4 lists the returns from the high low breakout system with the profits from the baseline Naive Reversing system subtracted. As can be seen, with the exception of the Dow, the method out-performs the baseline system markedly.

<table>
<thead>
<tr>
<th>Mkt</th>
<th>LongPL</th>
<th>ShortPL</th>
<th>L Win %</th>
<th>Av L PL</th>
<th>S Win %</th>
<th>Av S PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>11278</td>
<td>10280</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>CAC</td>
<td>2551</td>
<td>-855</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FTSE</td>
<td>8905</td>
<td>14366</td>
<td>6</td>
<td>4</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Dow</td>
<td>-35397</td>
<td>-34384</td>
<td>-14</td>
<td>-21</td>
<td>-11</td>
<td>-20</td>
</tr>
<tr>
<td>Nikkei</td>
<td>29664</td>
<td>23068</td>
<td>6</td>
<td>18</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>AORD</td>
<td>15961</td>
<td>18947</td>
<td>13</td>
<td>9</td>
<td>17</td>
<td>13</td>
</tr>
</tbody>
</table>

The second breakout system used the minor fluctuation 90% quantile value as the trigger level to trade long or short. Once the market moved above this level a long trade was made or if the market moved below this level a short trade was executed. Overall this methodology produces good results with the exception of the Dow and CAC. Table 6.5
lists the difference in results between this breakout methodology and the baseline Naive Reversing system.

Table 6.5: PL from Naive Reversing system subtracted from results generated by a trading system based on the 90% quantile level breakout system.

<table>
<thead>
<tr>
<th>Mkt</th>
<th>LongPL</th>
<th>ShortPL</th>
<th>L Win %</th>
<th>Av L PL</th>
<th>S Win %</th>
<th>Av S PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>6894</td>
<td>3240</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>CAC</td>
<td>1707</td>
<td>-2725</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>FTSE</td>
<td>6474</td>
<td>11180</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Dow</td>
<td>-46061</td>
<td>-40901</td>
<td>-17</td>
<td>-34</td>
<td>-12</td>
<td>-31</td>
</tr>
<tr>
<td>Nikkei</td>
<td>21282</td>
<td>11344</td>
<td>7</td>
<td>15</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>AORD</td>
<td>15466</td>
<td>19120</td>
<td>10</td>
<td>8</td>
<td>14</td>
<td>12</td>
</tr>
</tbody>
</table>

6.2.6 Candlestick Patterns

A number of so-called candlestick patterns were explored for predictive properties in financial markets. The patterns tested were essentially market reversal patterns. Firstly, Hammer and Inverted Hammer were considered. When these patterns occur it is considered a sign that the market will move upwards, especially when they are encountered in a down trend, thus reversing direction. Table 4.18 lists the results from placing buy trades after all occurrences of either pattern while Table 4.19 shows the results from initiating buy trades when these patterns occur in trending markets. The Aroon indicator detailed in section B.2 of Appendix B was used to determine if the market was in a trending phase. Overall the results from using the Hammer or Inverted Hammer candlestick pattern to predict market movement was poor. Only the Dow and FTSE showed positive results, although the per trade profit from the Dow was good. Another consideration is the small number of times in which these patterns occur, only 22 trades in the 14 years of the Dow data were made. Clearly these visual patterns are quite subjective and in reality a trader would use judgement as to whether the pattern constituted a Hammer or not. However, in developing an algorithm to recognise and trade them no such latitude is possible and thus the number of trades taken by the algorithms is likely to be less than in reality.

The next pattern tested was the Engulfing pattern. This pattern occurs when a candlestick has a lower low and a higher high than the previous day’s candlestick, it engulfs it. The presence of this pattern is supposed to indicate that the market will change direction. The results of a trading algorithm that trades long or short depending upon the presence of an Engulfing candlestick can be seen in Table 4.20. The results shown in Table 4.21 are similar to Table 4.20 except trades are only taken if the market is trending, with the Aroon indicator used to determine if the market is in a trending phase.
The results from both algorithms were very poor, with most markets showing negative results.

The final pattern tested was the Doji, one of the best known candlestick patterns. Again the presence of this pattern in a trending market is supposed to give warning to the market participants that a reversal may be imminent. Table 4.22 shows the results of a trading system that uses the presence of a Doji in a trending market to initiate a trade. Again the results are very poor with mostly negative returns.

None of the candlestick patterns produced good results in the trading algorithms and time frames used. Given the subjective nature of what constitutes the particular pattern and the context in which it occurs it is difficult to generate trading systems through computer programming. Further, it may be beneficial to alter the trading time frame to a longer period and perhaps combine these patterns with additional technical analysis indicators, and is an area suitable for further work.

6.3 Time Series Analysis

Exponential smoothing, ARIMA and hybrid ARIMA models were used to generate forecasts of the closing prices and the more general situation of whether the market would rise or fall. In modelling the more general situation of market direction, a categorical label was employed. The categorical label used “U” to represent occasions when the market prices increased and “D” for when it decreased in value.

6.3.1 Exponential Smoothing

Exponential smoothing was used to make one-step ahead forecasts for the indice data sets. Initially two base systems were explored in order that they could be used as a baseline against which later results could be compared. The two methods generated predictions using a mean method in which the forecast was simply the average of the sample and a drift method which is the extrapolation of a straight line between the first and last point in a data sample. For all the forecasts generated in this section a moving window approach was adopted. A window of sample data points was used, typically the last 30 observations, for which a forecast was generated using one of the methods. This window was then advanced one observation forward and the forecast for this data set calculated and the process repeated for the entire data set.

Once the forecasts were generated they were passed to a trading algorithm which made decisions regarding whether to trade long or short based on the value of the forecast. If
the forecast was higher than the previous closing price a long trade was initiated or if it was lower a short trade was made with the expectation that the market would fall. Results from the forecasts generated from the mean method can be seen in Table 5.2 while results from the drift method can be seen in Table 5.3. Both systems produced poor results and wouldn’t generate enough profits to offset any transaction costs that would be incurred in the real world.

Next exponential smoothing was used to generate forecasts. Allowing for trend, seasonality and whether there are additive or multiplicative affects, a variety of models may be used to generate predictions. The ets function of the forecast package in R can create models from all the available possibilities. Once again using a moving window approach, one-step ahead forecasts were created for the indice data sets. As the window moved through the data, different models were selected as being the best fit and these used to generate the forecasts. Having generated the predictions they were passed to the same trading algorithm as used for the mean and drift models, and the results can be seen in Table 5.5.

On the whole the results from the models generated from exponential smoothing are quite poor, with only the Dow producing reasonable, though very modest results. In comparison to the base systems developed from mean and drift methods, the adaptive exponential smoothing concept produces higher profits in general when all the results are considered, but there are much better returns from alternative methods such as the daily breakout technical analysis methods.

6.3.2 ARIMA Models

The auto.arima function of the R forecast package was used to assist in generating ARIMA models for the national indice data sets used in this study. For convenience the models selected are listed in Table 6.6.

<table>
<thead>
<tr>
<th>Market</th>
<th>ARIMA Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>ARIMA(3,1,3)</td>
</tr>
<tr>
<td>CAC</td>
<td>ARIMA(2,1,3)</td>
</tr>
<tr>
<td>FTSE</td>
<td>ARIMA(2,1,3)</td>
</tr>
<tr>
<td>Dow</td>
<td>ARIMA(1,1,2)</td>
</tr>
<tr>
<td>Nikkei</td>
<td>ARIMA(2,1,3)</td>
</tr>
<tr>
<td>AORD</td>
<td>ARIMA(1,1,0)</td>
</tr>
</tbody>
</table>
The one-step forecasts generated from these models were then used in two trading systems. In the first algorithm the decision to trade long or short was dependant upon on the relative values of the previous close price and the forecast. If the forecast was higher than the close price a long trade was entered the next day in the expectation that the market would rise towards the prediction. The opposite situation was expected for when the forecast was lower than the close price. The R code for this first algorithm can be seen in Appendix A section A.2.2 and is labelled system 1.

The second trading algorithm used the relative values of the predictions themselves in order to decide whether to trade long or short. If the current forecast was higher than the previous one a long trade was entered the following day and vice versa. The R code for this second algorithm can be seen in Appendix A section A.2.3 and is labelled system 2.

The results from both systems were poor. The difference in mean PL per trade between the first system based on the auto.arima models (previous close in comparison to forecast) and the mean PL for the Naive Reversing system from section 4.2.2 Chapter 4 (the best of the baseline systems) can be seen in Table 6.7. Most of the results are worse than the naive baseline system except for the French CAC and US Dow when trading long.

<table>
<thead>
<tr>
<th>Mkt</th>
<th>Diff in Mean Long PL</th>
<th>Diff in Mean Short PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>-6</td>
<td>-11</td>
</tr>
<tr>
<td>CAC</td>
<td>2</td>
<td>-3</td>
</tr>
<tr>
<td>FTSE</td>
<td>1</td>
<td>-3</td>
</tr>
<tr>
<td>Dow</td>
<td>-3</td>
<td>-14</td>
</tr>
<tr>
<td>Nikkei</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>AORD</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

6.3.3 ARIMA Hybrids - Predicting Closing Price

Hybrid ARIMA models in which Artificial Neural Networks and k-Nearest Neighbour algorithms were used instead of regression in the ARIMA algorithm to predict the closing prices of financial markets, see Chapter 5 section 5.6 for details.

6.3.3.1 ARIMA/Artificial Neural Networks (ANN)

Overall the use of the forecasts from the models generated from hybrid ARIMA/ANN algorithms to create trading systems was not very successful. The results from passing
Chapter 6. Analysis

the indice data sets augmented with a forecast attribute generated by the hybrid ARIMA models can be seen in Tables 5.12 and 5.13 of Chapter 5. System 1 compares the price of the forecast with the price of the previous close and in the event that the prediction is higher than the previous closing price a long trade is entered. The opposite is true when the forecast is lower than the closing price and a short trade is made. System 2 is similar but compares the forecast with the last forecast. In the event that the current prediction is greater than the previous one a long trade is initiated.

Considering the results in Tables 5.12 and 5.13 it can be seen that System 1 slightly outperforms System 2. However, the results are poor across most of the indices with most producing negative results. The best of the returns were from System 2 applied to the DAX, which would have provided a profit even after allowing for transactions costs which would be encountered in reality. The high percentage win rate for the long trades may make this combination a candidate for additional study in conjunction with other techniques to filter trades further. Overall the results prove inferior to the baseline Naive Reversing System introduced in 4.2.2 Chapter 4 and the difference between the System 1 returns and the baseline returns can be seen in Table 6.8.

<table>
<thead>
<tr>
<th>Mkt</th>
<th>Diff in Mean Long PL</th>
<th>Diff in Mean Short PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>-2</td>
<td>-4</td>
</tr>
<tr>
<td>CAC</td>
<td>1</td>
<td>-2</td>
</tr>
<tr>
<td>FTSE</td>
<td>-2</td>
<td>-4</td>
</tr>
<tr>
<td>Dow</td>
<td>-5</td>
<td>-12</td>
</tr>
<tr>
<td>Nikkei</td>
<td>1</td>
<td>-8</td>
</tr>
<tr>
<td>AORD</td>
<td>-6</td>
<td>-1</td>
</tr>
</tbody>
</table>

6.3.3.2 ARIMA/k-Nearest Neighbour (k-NN)

An alternative to the ARIMA/ANN methodology is to replace ANN with a k-Nearest Neighbour learner, that looks for neighbouring data points that are similar or close (usually defined by some measure distance) to it. Results from using the forecasts generated in the two trading systems introduced in section 5.5 can be seen in Tables 5.14 and 5.15.

The results from both System 1 and 2 are similar to each other and those generated using the hybrid ARIMA/ANN forecasts of the previous section. In comparison to the baseline Naive Reversing approach they are likewise inferior, although for trading long they produce similar winning percentages. The best of the results were generated by applying System 1 to the AORD and Dow data sets, although the Dow only produced
reasonable results while trading long. Table 6.9 lists the difference in results between those generated with System 1 and the ARIMA/k-NN models and the baseline Naive Reversing system.

Table 6.9: PL from Naive Reversing system subtracted from results generated by trading System 1 based on ARIMA/k-NN closing price forecasts.

<table>
<thead>
<tr>
<th>Mkt</th>
<th>L Win %</th>
<th>Av L PL</th>
<th>S Win %</th>
<th>Av S PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>-1</td>
<td>-1</td>
<td>-4</td>
<td>-2</td>
</tr>
<tr>
<td>CAC</td>
<td>-1</td>
<td>-1</td>
<td>-3</td>
<td>-2</td>
</tr>
<tr>
<td>FTSE</td>
<td>1</td>
<td>-2</td>
<td>0</td>
<td>-3</td>
</tr>
<tr>
<td>Dow</td>
<td>1</td>
<td>1</td>
<td>-3</td>
<td>-7</td>
</tr>
<tr>
<td>Nikkei</td>
<td>-3</td>
<td>-1</td>
<td>-4</td>
<td>-10</td>
</tr>
<tr>
<td>AORD</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>

6.3.4 ARIMA Hybrids - Predicting Up Down with Categorical Label

An alternative to forecasting the closing price of a financial market is to predict the general direction it will move in the short term either up or down. To this end an additional categorical label to indicate whether the market increased or fell in value over the course of the day was introduced into the data sets. This new attribute had the value “U” if the market increased and “D” if it decreased. Hybrid ARIMA models were then employed to predict this label.

6.3.4.1 ARIMA/Artificial Neural Networks (ANN)

The first methodology employed was to combine ARIMA with Artificial Neural Networks (ANN) in order to generate a forecast of the categorical label that indicated whether the market increased in value or fell over the course of the day. Once the forecast was generated and added to the data set in the form of a new attribute it was passed to a trading algorithm which based the decision whether to trade long or short on the forecast generated. The R code for the trading algorithm can be seen in Appendix A section A.2.4 and the results generated in Table 5.17. Overall the returns were modest and inferior to the Naive Reversing baseline system used for comparison. In comparison to the hybrid ARIMA/ANN forecast of the closing price in section 6.3.3.1 these results were superior, being mostly positive. Generally the returns from trading long were better than trading short and could be a candidate for further studies if this technique was combined with additional filters, such has one of the technical analysis indicators.
6.3.4.2 ARIMA/k-Nearest Neighbour (k-NN)

Replacing the ANN learner from the previous section with a k-NN method resulted in similar results. Again the returns from using the hybrid methodology were inferior to the baseline methodology. Table 5.18 lists the results of passing the forecasts from this combination to the trading algorithm in Appendix A section A.2.4. Table 6.10 lists the difference in results between using this hybrid ARIMA/k-NN approach and the Naive Reversing baseline returns.

Table 6.10: PL from Naive Reversing system subtracted from results generated by a trading system based on ARIMA/k-NN U/D forecasts.

<table>
<thead>
<tr>
<th>Mkt</th>
<th>L Win %</th>
<th>Av L PL</th>
<th>S Win %</th>
<th>Av S PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>1</td>
<td>-4</td>
<td>-2</td>
<td>-6</td>
</tr>
<tr>
<td>CAC</td>
<td>-1</td>
<td>0</td>
<td>-4</td>
<td>-2</td>
</tr>
<tr>
<td>FTSE</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>Dow</td>
<td>-1</td>
<td>-4</td>
<td>-5</td>
<td>-11</td>
</tr>
<tr>
<td>Nikkei</td>
<td>-1</td>
<td>5</td>
<td>-2</td>
<td>-4</td>
</tr>
<tr>
<td>AORD</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>

6.3.4.3 ARIMA/Support Vector Machine (SVM)

Finally, the ARIMA methodology was coupled with a Support Vector Machine (SVM) learner. The SVM is appropriate here because the categorical label being forecast is binary, there are only the values "U" or "D" representing up (the market increased) and down (the market fell) respectively. The results from passing the generated forecast to the same trading algorithm as that used in the previous section and described in Appendix A section A.2.4 can be seen in Table 5.20 of Chapter 5. Overall the results were poor with the exception of the FTSE and the CAC and Nikkei trading long.

Table 6.11 lists the difference in results between using this hybrid ARIMA/SVM approach and the Naive Reversing baseline returns.

Table 6.11: PL from Naive Reversing system subtracted from results generated by a trading system based on ARIMA/SVM U/D forecasts.

<table>
<thead>
<tr>
<th>Mkt</th>
<th>L Win %</th>
<th>Av L PL</th>
<th>S Win %</th>
<th>Av S PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>0</td>
<td>-1</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>CAC</td>
<td>-4</td>
<td>-5</td>
<td>-6</td>
<td>-5</td>
</tr>
<tr>
<td>FTSE</td>
<td>1</td>
<td>2</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>Dow</td>
<td>1</td>
<td>0</td>
<td>-4</td>
<td>-9</td>
</tr>
<tr>
<td>Nikkei</td>
<td>-3</td>
<td>-1</td>
<td>-3</td>
<td>-10</td>
</tr>
<tr>
<td>AORD</td>
<td>0</td>
<td>-5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
6.4 Conclusion

This study delved into the issue of whether financial markets can be predicted with the use of technical analysis or times series modelling. To this end a wide variety of technical analysis indicators were explored along with a range of time series models. One aspect of technical analysis worth noting is that opinion is divided as to its value, with many voices in academia being critical of it (Kuang et al., 2014, Fang et al., 2014, Bajgrowicz and Scaillet, 2012). Having stated that, it is also a fact that it is widely, almost ubiquitously, used by participants of the financial markets (Taylor and Allen, 1992). The widespread use of technical analysis includes the large body of amateur traders, as may be expected, as well as highly educated professionals. Indeed it was reported by Menkhoff (2010) that most fund managers who were polled, sophisticated professionals in this arena, employ technical analysis.

The results from the technical analysis presented in Chapter 4 were grouped into the general area in which they purport to operate. These area were trend detection, market reversals, momentum indicators, breakout patterns and candlestick patterns. Of all the technical indicators explored in this study the breakout and trend detection methods seem to hold the most promise. This is in agreement with Brock et al. (1992) who also found merit in these techniques. The use of Moving Average Convergence/Divergence (MACD) is one area where the results of this study divert from the literature. The results from Chapter 4 section 4.3.2 are quite poor whereas Ulku and Prodan (2013) report profitable returns from using MACD to forecast national stock market indices.

Another area in which conflicting results are found in the literature is the use of candlestick patterns. Marshall et al. (2006) reported on unsuccessful studies using a range of candlestick patterns to assist in forecasting the Dow Jones Industrial Average. This is contrasted by Lu (2014) who reports on the successful use candlestick charts in finding profitable trades in the Taiwan stock market. Results from this study reflect the findings of Marshall et al. (2006), in that predictions from the candlestick patterns produced poor returns. However, an element of caution is required before dismissing the usefulness of candlestick patterns. Being visual patterns they need an element of subjectivity to be applied to their use and this is difficult to achieve in the rigid arena of computer programming.

The second area of study concentrated on established time series modelling techniques with a firmer basis in academia. This included the use of exponential smoothing, ARIMA and hybrid ARIMA techniques. The Holt-Winters method of exponential smoothing defines various aspects of a time series and applies a smoothing function to each (Winters, 1960). Thus models can be defined to account for stationary, trending or data sets with
a seasonal element. Financial markets exhibit a variety of behaviour at different periods and thus one single smoothing model is not appropriate. The approach adopted in this study was to use a moving window technique. Thus as the window moved through the data set an appropriate model could be selected and applied for each subset of observations. The results generated from this exponential moving methodology were poor, barely producing returns better than a baseline approach that simply used the average of the data sample.

Another widely used time series modelling technique is Auto-Regressive Integrated Moving Average (ARIMA). ARIMA models were built for the data sets under study and the forecasts generated used in trading algorithms, see Chapter 5 section 5.5 for details. The results were generally poor, although they returned profits while forecasting long trades.

One major limitation in the ARIMA model is the need for the relationship in the data to be linear. The use of hybrid ARIMA methods is an attempt to overcome this limitation, coupling ARIMA with a different learner such as Artificial Neural Networks (ANN), k-Nearest Neighbour (k-NN) or Support Vector Machines (SVM). There are many reports in the literature of good results obtained from the use of these hybrid methods. Wang et al. (2012), Khashei et al. (2009) and Zhang (2003) reported promising results from the use of ARIMA/ANN and Pai and Lin (2005) good results from ARIMA/SVM. This study showed only very modest returns from the use of ARIMA/ANN, ARIMA/k-NN or ARIMA/SVM.

In summary, this study addressed the difficult problem of predicting the short-term movements in a number of stock market indices, a task that has been attempted by thousands of workers over the years. The techniques used to make these predictions were derived from technical analysis and time series methods. On the whole the methods employed were not successful with the exception of the daily breakout methods detailed in section 4.6. The aroon trend detection indicator also showed some promise. The forecasts from the time series models were in general poor, in that trading systems based on these predictions produced very modest and often negative returns. However, this study covered only a small portion of the possible permutations available in this subject. There are many more financial markets, technical indicators and data mining methods that could be explored. Further, there are more time frames available for study and the variety of trading algorithms in use is extensive. It was noted in Chapter 3 that the markets under test have a tendency to switch direction, such that today’s movements are opposite to yesterday’s movements. Thus, any methodology that doesn’t capture this will produce poor returns from a trading perspective. However, poor results from a methodology in one time-frame is no indication of similar results in a longer or shorter
time frame and it would be interesting to continue the work so that longer time horizons are considered.

6.4.1 Research question revisited

This study had the aim of answering the following question:

“Can the use of technical indicators or time series analysis help to predict the future direction and movement of financial markets?”

Essentially there are two elements to this question, the ability of technical analysis to aid in predicting future market movements and the usefulness of time series modelling techniques to predict market movements. Considering technical analysis first the results overall are quite poor and most techniques tried produced poor results, rarely beating the baseline system of simply trading in the opposite direction to the previous day, especially when this concept is married with a stop loss. Overall the daily breakout ideas and the aroon indicator produced the best results from the technical analysis indicators. Of the times series modelling techniques explored the results were very modest and quite similar across the board with no one methodology standing out as a success. In summary, of all the techniques studied here only the daily breakout methods proved to be a useful tool in trading the chosen financial markets.

6.4.2 Future Work

Restraints of time and resources restricted this study to a selection of technical analysis indicators and times series models. Further, the data selected were limited to national indices of daily data. There are a large number of other technical indicators that can be explored and many other financial markets including individual stocks, commodities such as gold and oil and a wide range of currency pairs. The techniques reported in this study were compared in isolation. In many situations traders use combinations of methods and this could form the basis of future work. Given the huge number of possible combinations careful consideration would have to be given to the selection of the techniques to use.

The time frame of the data used is another important consideration. This report used daily open, high, low and close data and used trading algorithms based around the day. Data sets in different times frames, particularly shorter ones such as minute or even tick data (the most granular of financial data) could be explored. Trading algorithms that hold trades for days or weeks could also be tried and this idea maybe particularly
interesting for techniques such as candlestick patterns for which the predictive benefit may not be immediate.
Appendix A

R Code

A.1 Chapter 4

The R code used to generate the results and tables in Chapter 4 is shown in listing A.1.1. This is followed by the individual files containing the algorithms used in the chapter.

A.1.1 Chapter 4 Results Generation

```r
# Chapter 4
setwd("D:/Allan/DropBox/MSc/Dissertation/Thesis/RCode")

# libraries to include
library(xtable)
library(TTR)
library(candlesticks)

# files to include
source("../RCode//Utils.R")
source("../RCode//NaiveLongSystem.R")
source("../RCode//NaiveLongSystem2.R")
source("../RCode//NaiveReversePrev.R")
source("../RCode//SMA_sys.R")
source("../RCode//MACD_XO.R")
source("../RCode//Aroon.R")
source("../RCode//SAR.R")
source("../RCode//Stoch.R")
source("../RCode//ROC.R")
source("../RCode//MACD_OB.R")
source("../RCode//Bout_sys_2.R")
source("../RCode//Quant90_sys.R")
source("../RCode//Candle_Hammer.R")
source("../RCode//Candle_Hammer_aroon.R")
source("../RCode//Candle_Engulf.R")
source("../RCode//Candle_Engulf_aroon.R")
```
source("../RCode//Candle_Doji_aroon.R")

fil <- c("../Data/Dax_2000_d.csv",
 "../Data/CAC_2000_d.csv",
 "../Data/F100_2000_d.csv",
 "../Data/Dow_2000_d.csv",
 "../Data/N225_2000_d.csv",
 "../Data/Oz_2000.csv")

df10 <- as.data.frame(matrix(seq(11),nrow=1,ncol=11)) # to hold results
std6 <- c(1,3,4,5,7,8,10)
df10 <- as.data.frame(matrix(seq(11),nrow=1,ncol=11))

NaiveRev <- run_NaiveReversePrev(fil, 0, nm)
misc_col <- 11

--------- 1. Naive Long Base System --------
run_NaiveLongSystem <- function(fil, SLoss, nm){
 df10 <- as.data.frame(matrix(seq(11),nrow=1,ncol=11))
 for (i in 1:length(fil)){
 Mkt <- read.csv(fil[i])
 a <- NaiveLongSystem(Mkt, SLoss, nm[i])
 df10 <- rbind(df10, a)
 }
 df.name <- names(a)
 names(df10) <- df.name
 df10 <- df10[-1,]
 return(df10)
}

res1 <- run_NaiveLongSystem(fil,0,nm)
res1[misc_col] <- 'Naive Long'

total_res <- res1

for summary results
dat <- res1[,c(1,3,5,7)]
dig <- 2
cap = c('Naive Long System. A very simple system in which the algorithm assumes
 the market will rise and enters a long trade each day.',
 'Results from the Naive Long System')
lab = 'tab:nlng_results'
filename = '../Tables/chp_ta_naive_long.tex'
inclrnam = FALSE
print_xt(dat,dig,cap,lab,al,filname,inclrnam)

--------- Naive Long Base System ----------
---------- previous close and today's close
run_NaiveLongSystem2 <- function(fil, SLoss, nm){
 df10 <- as.data.frame(matrix(seq(11),nrow=1,ncol=11))
 for(i in 1:length(fil)){
Dax <- read.csv(f1l[i])
a <- NaiveLongSystem2(Dax, 0, nm[i])
df10 <- rbind(df10, a)
df.name <- names(a)
names(df10) <- df.name
df10 <- df10[-1]
return(df10)
}

res2 <- run_NaiveLongSystem2(fil, 0, nm)
res2[misc_col] <- 'Naive Long 2'
Add to total results
total_res <- rbind(total_res, res2)

dig <- 2
cap = c('Naive Long System changed such that the trading period is the previous
 close price minus today\'s close.',
 'Results from the Naive Long System trading close to close')
lab = 'tab:nlng_results_2'
filename = '../Tables/chp_ta_naive_long_ctoc.tex'
iclrnam=FALSE
print_xt(dat, dig, cap, lab, al, filename, inclrnam)

repeat latex table for Chp6 - affects numbering if re-use from Chp5
dat <- res3[,c(1,3,4,5,7,8,10)]
dig <- 2
cap = c('Results from a naive trading system which simply trades in the opposite
direction to the previous day\'s movement.',
 'Results from the Naive Reversing System.')
lab = 'tab:n_rev_results'
filename = '../Tables/chp_ta_naive_reverse_prev.tex'
iclrnam=FALSE
print_xt(dat, dig, cap, lab, al, filename, inclrnam)
lab = 'tab:n_rev_results_chp6'
filename = '../Tables/chp_ta_naive_reverse_prev_chp6.tex'
inclrnam=FALSE
print_xt(dat,dig,cap,lab,al,filename,inclrnam)

repeat with a stop loss
res3a <- run_NaiveReversePrev(fil, -75, nm)
res3a[misc_col] <- 'Reverse Prev Stop Loss'

Add to total results
total_res <- rbind(total_res, res3a)

data <- res3a[,std6]
dig <- 2
cap = c('Naive system which reverses the previous day\'s trade direction with stop loss.',
 'Naive Following System. ')
lab = 'tab:n_rev_results_sl'
filename = '../Tables/chp_ta_naive_reverse_prev_sl.tex'
inclrnam=FALSE
print_xt(dat,dig,cap,lab,al,filename,inclrnam)

----------------- Trend Detection Indicators ----------------
--------------- SMA
run_BaseSystem1SMA <- function(fil,SLoss,nm){
df10 <- as.data.frame(matrix(seq(11),nrow=1,ncol=11))
for(i in 1:length(fil)){
 Dax <- read.csv(fil[i])
 a <- BaseSystem1SMA(Dax, 5, SLoss, nm[i])
 b <- BaseSystem1SMA(Dax, 25, SLoss, nm[i])
 c <- BaseSystem1SMA(Dax, 50, SLoss, nm[i])
 d <- BaseSystem1SMA(Dax, 100, SLoss, nm[i])
 e <- BaseSystem1SMA(Dax, 200, SLoss, nm[i])
 df10 <- rbind(df10, a, b, c, d, e)
}
dl.name <- names(a)
names(df10) <- dl.name
df10 <- df10[-1,]
return(df10)
}

res4 <- run_BaseSystem1SMA(fil,0,nm)

Add to total results
total_res <- rbind(total_res, res4)

data <- res4[,c(1,3,4,5,7,8,10,11)]
dig <- 2
cap = c('Results from a system based on SMA.', 'Results from a system based on SMA ')
lab = 'tab:sma_results'


```
filename = '../Tables/chp_ta_sma.tex'
inclrnam=FALSE
print_xt(dat, dig, cap, lab, al, filename, inclrnam)

# SMA SLoss ---------------------
runt_BaseSystem1SMA2 <- function (fil, SLoss, nm){
  df10 <- as.data.frame(matrix(seq(11), nrow=1, ncol=11))
  for (i in 1:length(fil)){
    Dax <- read.csv(fil[i])
    h <- BaseSystem1SMA(Dax, 100, -50, nm[i])
    hh <- BaseSystem1SMA(Dax, 100, -100, nm[i]) #don't use i !!!!!
    df10 <- rbind(df10, h, hh)
  }  
  df.name <- names(hh)
  names(df10) <- df.name
  df10 <- df10[-1,]
  return(df10)
}
res5 <- runt_BaseSystem1SMA2(fil, 0, nm)

# Add to total results
total_res <- rbind(total_res, res5)
dat <- res5[,c(1,3,4,5,7,8,10,11)]
dig <- 2
cap = c('Results from a system based on SMA with stop loss.,'
    'Results from a system based on SMA with stop loss')
lab = 'tab:sma_results_Sloss'
filename = '../Tables/chp_ta_sma_sloss.tex'
inclrnam=FALSE
print_xt(dat, dig, cap, lab, al, filename, inclrnam)

# ------------------------------------------------------------------
# --------- Moving Average Convergence/Divergence (MACD)
run_MACD_XO <- function (fil, SLoss, nm){
  df10 <- as.data.frame(matrix(seq(11), nrow=1, ncol=11))
  for (i in 1:length(fil)){
    Mkt <- read.csv(fil[i])
    ma <- MACD(Mkt[,"Open"], 12, 26, 9, maType="EMA") #calc MACD values
    Mkt <- cbind(Mkt, ma)
    a <- MACD_XO(Mkt, SLoss, nm[i])
    df10 <- rbind(df10, a)
  }  
  df.name <- names(a)
  names(df10) <- df.name
  df10 <- df10[-1,]
  return(df10)
}
res6 <- run_MACD_XO(fil, 0, nm)
res6[misc_col] <- 'MACD'

# Add to total results
```
% Appendix A. R Code

total_res <- rbind(total_res, res6)
dat <- res6[, std6]
dig <- 2
cap <- c('Results from a system using MACD as a trend indicator.
 Results from a system using MACD as a trend indicator')
lab <- 'tab:mac_trend_results'
filename = '../Tables/chp_ta_macd.tex'
inclrnam = FALSE
print_xt(dat, dig, cap, lab, al, filename, inclrnam)

------------ Aroon ------------------------
run_aroon Sys <- function (fil, SLoss, nm){
 df10 <- as.data.frame(matrix(seq(11), nrow = 1, ncol = 11))
 for (i in 1:length(fil)){
 Mkt <- read.csv(fil[i])
 ar <- aroon(Mkt[c(3,4)], n = 20) # calc Aroon values
 Mkt <- cbind(Mkt, ar) # Add Aroon values to orig data set
 a <- aroon Sys(Mkt, SLoss, nm[i])
 df10 <- rbind(df10, a)
 }
 df.name <- names(a)
names(df10) <- df.name
df10 <- df10[-,]
return(df10)
}
res7 <- run_aroon Sys(fil, 0, nm)
res7[misc_col] <- 'Aroon'

Add to total results
total_res <- rbind(total_res, res7)
dat <- res7[, std6]
dig <- 2
cap <- c('Results from a system based on the Aroon indicator.
 Results from a system based on the Aroon indicator')
lab <- 'tab:aroon_results'
filename = '../Tables/chp_ta_aroon.tex'
inclrnam = FALSE
print_xt(dat, dig, cap, lab, al, filename, inclrnam)

---- Aroon with SLoss
aroondfsl <- as.data.frame(matrix(seq(11), nrow = 1, ncol = 11))
for (i in 1:length(fil)){
 Dax <- read.csv(fil[i]) # read data
 ar <- aroon(Dax[c(3,4)], n = 20) # calc Aroon values
 Dax <- cbind(Dax, ar) # Add Aroon values to orig data set
 a <- aroon Sys(Dax, -100, nm[i]) # Call fnc
}
aroondfsl <- rbind(aroondfsl, a)
}
df.name <- names(a)
names(aroondfsl) <- df.name
res7a <- run_aroon_sys(fil, -100, nm)
aroondfsl <- res7a
res7a[misc_col] <- 'Aroon Stop Loss'
Add to total results
total_res <- rbind(total_res, res7a)
dat <- res7a[, std6]
dig <- 2
cap = c('Results from a system based on the Aroon indicator with stop loss.',
'Stop results from a system based on the Aroon indicator with stop loss')
lab = 'tab: aroon_results_sloss'
filname = '../Tables/chp_ta_aroon_sloss.tex'
iclnrnam = FALSE
print_xt(dat, dig, cap, lab, al, filename, inclrnam)
Aroon - Diffs - between Aroon and Aroon with Stop Loss
aroondfsldf <- as.data.frame(matrix(seq(3), nrow = 1, ncol = 3))
ln <- nrow(aroondfsl)
res <- 1:3
for (i in 1:ln){
 res[1] <- aroondfsl[i,1]
 res[2] <- as.numeric(res7a[i,3]) - as.numeric(res7[i,3])
 res[3] <- as.numeric(res7a[i,4]) - as.numeric(res7[i,4])
 aroondfsldf <- rbind(aroondfsldf, res)
}
df.name <- c("Market", "Long Difference", "Short Difference")
names(aroondfsldf) <- df.name
aroondfsldf <- aroondfsldf[-1,]
dat <- aroondfsldf[,c(1,2,3)]
dig <- 2
cap = c('Impact of using stop loss with Aroon trend indicator.',
'Impact of using stop loss with Aroon trend indicator')
lab = 'tab: aroon_results_sloss_diff'
filname = '../Tables/chp_ta_aroon_sloss_diff.tex'
iclnrnam = FALSE
print_xt(dat, dig, cap, lab, al, filename, inclrnam)
Aroon compared to baseline system
res7_diff <- sub_df_av_pl(res7, NaiveRev)
#print table
dat <- res7_diff
dig <- 0
cap = c('PL from Naive Reversing system subtracted from results generated by a trading system based on the Aroon indicator.',
'Aroon system results minus Naive Reversing results')
lab = 'tab: aroon_results_diff'
Appendix A. R Code

```r
filename = '../Tables/chp_ta_aroon_diff.tex'
inclrnam=FALSE
print_xt(dat, dig, cap, lab, al, filename, inclrnam)

# ---------------------------------------- Trend Reversal ----------------------------------------

# ------------ Trend Reversal -------------------------

# ----------- SAR

run_sar_sys <- function(fil, SLoss, nm)
{
df10 <- as.data.frame(matrix(seq(11), nrow = 1, ncol = 11))
for (i in 1:length(fil)){
  Mkt <- read.csv(fil[i])
  sar <- SAR(Mkt[,c(3,4)]) #HL
  Mkt <- cbind(Mkt, sar)
  a <- sar_sys(Mkt, SLoss, nm[i])
  df10 <- rbind(df10, a)
}
df.name <- names(a)
names(df10) <- df.name
df10 <- df10[-1,]
return(df10)
}
res8 <- run_sar_sys(fil, 0, nm)
res8[misc_col] <- 'SAR'

# Add to total results
total_res <- rbind(total_res, res8)

dat <- res8[, std6]
dig <- 2
cap = c('Results from a system based on the SAR indicator.',
        'Results from a system based on the SAR indicator')
lab = 'tab:sar_results'
filename = '../Tables/chp_ta_sar.tex'
inclrnam=FALSE
print_xt(dat, dig, cap, lab, al, filename, inclrnam)

# ---------------------------------------- MACD OB ----------------------------------------

run_MACD_OB <- function(fil, SLoss, nm){
df10 <- as.data.frame(matrix(seq(11), nrow = 1, ncol = 11))
for (i in 1:length(fil)){
  Mkt <- read.csv(fil[i])
  ma <- MACD(Mkt[,"Open"], 12, 26, 9, maType="EMA") #calc MACD values
  Mkt <- cbind(Mkt, ma) #Add MACD values to orig data set
  lw <- quantile(Mkt$macd, na.rm=T, probs = 0.15) #Calc low val for algo
  up <- quantile(Mkt$macd, na.rm=T, probs = 0.85) #Calc up val for algo
  a <- MACD_OB(Mkt, 0, nm[i], lw, up)
  df10 <- rbind(df10, a)
}
df.name <- names(a)
```
Appendix A. R Code

```r
names(df10) <- df.name
df10 <- df10[-1,]
return(df10)
}

res9 <- run_MACD_OB(fil,0,nm)
res9[misc_col] <- 'MACD Reversal'

# Add to total results
total_res <- rbind(total_res, res9)

dat <- res9[,std6]
dig <= 2
cap = c('Results from a trading system based on MACD being used as a trend reversal indicator.,'
       'Results from a system based on MACD as trend reversal indicator')
lab = 'tab:mac_ob_results'
filename = '../Tables/chp_ta_macd_ob.tex'
inclrnam=FALSE
print_xt(dat,dig,cap,lab,al,filename,inclrnam)

#----------------------------------------------------------
# ------------------ Stochastic -----------------------------
#----------------------------------------------------------

ln <- nrow(df10)
for(i in 1:length(fil)){
  Dax <- read.csv(fil[i])
st <- stoch(Dax[c(3,4,5)]) #HL
  Dax <- cbind(Dax,st)
a <- stoch_sys(Dax,0,nm[i])
df10 <- rbind(df10, a)
}
df10 <- df10[-c(1:ln-1),]

run_stoch_sys <- function(fil,SLoss,nm){
df10 <- as.data.frame(matrix(seq(11),nrow=1,ncol=11))
for(i in 1:length(fil)){
  Mkt <- read.csv(fil[i])
st <- stoch(Mkt[c(3,4,5)]) #HL
  Mkt <- cbind(Mkt,st)
a <- stoch_sys(Mkt, SLoss, nm[i])
df10 <- rbind(df10, a)
}
df.name <- names(a)
names(df10) <- df.name
df10 <- df10[-1,]
return(df10)
}

res10 <- run_stoch_sys(fil,0,nm)
res10[misc_col] <- 'Stoch'

# Add to total results
```

total_res <- rbind(total_res, res10)

dat <- res10[,std6]
dig <- 2
cap = c('Results from a system based on the Stochastic indicator.',
'Results from a system based on the Stochastic indicator')
lab = 'tab:stoch_results'
filename = '../Tables/chp_ta_stoch.tex'
inclrnam=FALSE
print_xt(dat,dig,cap,lab,al,filname,inclrnam)

--------- Stochastic plus Stop Loss
res10a <- run_stoch_sys(fil,-100,nm)
res10a[misc_col] <- 'Stoch Stop Loss'

Add to total results
total_res <- rbind(total_res, res10a)
dat <- res10a[,std6]
dig <- 2
cap = c('Results from a system based on the Stochastic indicator with a stop
loss.',
'Results from a system based on the Stochastic indicator with a stop
loss')
lab = 'tab:stoch_results_sloss'
filename = '../Tables/chp_ta_stoch_sloss.tex'
inclrnam=FALSE
print_xt(dat,dig,cap,lab,al,filname,inclrnam)

#--
--------------------------- ROC ------------------------
run_roc_sys <- function(fil,SLoss,nm){
df10 <- as.data.frame(matrix(seq(11),nrow=1,ncol=11))
for(i in 1:length(fil)){
 Mkt <- read.csv(fil[i])
 roc <- ROC(Mkt$Close) #calc MACD values
 Mkt <- cbind(Mkt, roc) #Add MACD values to orig data set
 lw <- quantile(Mkt$roc, na.rm=T, probs=0.15) #Calc low val for algo
 up <- quantile(Mkt$roc, na.rm=T, probs=0.85) #Calc up val for algo
 a <- roc_sys(Mkt, SLoss, nm[i], lw, up)
 df10 <- rbind(df10,a)
}
df.name <- names(a)
names(df10) <- df.name
df10 <- df10[-1,]
return(df10)
}

res11 <- run_roc_sys(fil,0,nm)
res11[misc_col] <- 'ROC'

Add to total results
Appendix A. R Code

```R
res <- rbind(total_res, res11)
dat <- res11[, std6]
dig <- 2
cap <- c('Results from a system based on the ROC indicator.',  
         'Results from a system based on the ROC indicator')
lab <- 'tab:mac_roc_results'
filename = '../Tables/chp_ta_roc.tex'
inclrnam = FALSE
print_xt(dat, dig, cap, lab, al, filename, inclrnam)

total_res <- rbind(total_res, res11)
dat <- res11[, std6]
dig <- 2
cap <- c('Results from a system based on the ROC indicator.',  
         'Results from a system based on the ROC indicator')
lab <- 'tab:mac_roc_results'
filename = '../Tables/chp_ta_roc.tex'
inclrnam = FALSE
print_xt(dat, dig, cap, lab, al, filename, inclrnam)

# breakpoint

data <- read.csv(filenames[1])
ddf <- run_BaseSystem2Bout(data, SLoss, nm)
dat <- ddf[, std6]
dig <- 2
cap <- c('Results from a system based on the ROC indicator.',  
         'Results from a system based on the ROC indicator')
lab <- 'tab:mac_roc_results'
filename = '../Tables/chp_ta_roc.tex'
inclrnam = FALSE
print_xt(dat, dig, cap, lab, al, filename, inclrnam)

# ------------- Breakout Systems ------------------------------

data <- read.csv(filenames[1])
ddf <- run_BaseSystem2Bout(data, SLoss, nm)
dat <- ddf[, std6]
dig <- 2
cap <- c('Results from a system based on the ROC indicator.',  
         'Results from a system based on the ROC indicator')
lab <- 'tab:mac_roc_results'
filename = '../Tables/chp_ta_roc.tex'
inclrnam = FALSE
print_xt(dat, dig, cap, lab, al, filename, inclrnam)
```

------------ Daily Breakout ---------------------------------

```R
run_BaseSystem2Bout <- function(filenames, SLoss, nm){
  df10 <- as.data.frame(matrix(seq(11), nrow=1, ncol=11))
  for(i in 1:length(filenames)){
    Mkt <- read.csv(filenames[i])
    a <- run_BaseSystem2Bout(Mkt, SLoss, nm[i])
    df10 <- rbind(df10, a)
  }
  df.name <- names(a)
names(df10) <- df.name
df10 <- df10[-1,]
  return(df10)
}

res12 <- run_BaseSystem2Bout(filenames, 0, nm)
res12[misc.col] <- 'Daily Breakout'

# Add to total results
total_res <- rbind(total_res, res12)
dat <- res12[, std6]
dig <- 2
cap <- c('Results from the Daily High/Low Breakout System.',  
         'Results from the Daily High/Low Breakout System')
lab <- 'tab:hl_bout_sys'
filename = '../Tables/chp_ta_b_out.tex'
inclrnam = FALSE
print_xt(dat, dig, cap, lab, al, filename, inclrnam)

# comp to Naive

res_diff <- sub_df(res12, NaiveRev)
dat <- res_diff[,c(1,3,4,5,7,8,10)]
dig <- 0
cap <- c("PL from Naive Reversing system subtracted from results generated by a  
  trading system based on the H/L breakout system.",  
         "H/L breakout system results minus Naive Reversing results")
lab <- 'tab:hl_bout_sys_diff'
filename = '../Tables/chp_ta_b_out_diff.tex'
inclrnam = FALSE
print_xt(dat, dig, cap, lab, al, filename, inclrnam)
```
Appendix A. R Code

```r
# 90% Quantile Breakout
run_BaseSystem3Quant902 <- function (fil, SLoss, nm)
{
  df10 <- as.data.frame(matrix(seq(11), nrow=1, ncol=11))
  for(i in 1:length(fil)){
    Mkt <- read.csv(fil[i])
    a <- BaseSystem3Quant902(Mkt, SLoss, nm[i])
    df10 <- rbind(df10, a)
  }
  df.name <- names(a)
  names(df10) <- df.name
  df10 <- df10[, -1,]
  return(df10)
}

res14 <- run_BaseSystem3Quant902(fil, 0, nm)
res14[misc_col] <- '90% Quantile Breakout'

# Add to total results
total_res <- rbind(total_res, res14)

dat <- res14[, std6]
dig <- 2
cap = c('Results from a system that breaks out from the 90\% quantile level of the day\'s minor move.',
          'Results from a breakout system using the day\'s the minor move')
lab = 'tab:q_90_results'
filename = '../Tables/chp_ta_90q.tex'
inclrnam = FALSE
print_xt(dat, dig, cap, lab, al, filename, inclrnam)

# comp to Naive
res_diff <- sub_df(res14, NaiveRev)

dat <- res_diff[,c(1,3,4,5,7,8,10)]
dig <- 0
cap = c("PL from Naive Reversing system subtracted from results generated by a trading system based on the 90\% quantile level breakout system. ",
          "90\% quantile level breakout system minus Naive Reversing results")
lab = 'tab:chp_ta_90q_diff'
filename = '../Tables/chp_ta_90q_diff.tex'
inclrnam = FALSE
print_xt(dat, dig, cap, lab, al, filename, inclrnam)

# Candlestick Patterns
# -------- Hammer Pattern
run_candle_hammer <- function(fil, SLoss, nm)
{
  df10 <- as.data.frame(matrix(seq(11), nrow=1, ncol=11))
  for(i in 1:length(fil)){
    Mkt <- read.csv(fil[i], stringsAsFactors = FALSE)
    Mkt <- Mkt[, c(1,2,3,4,5,6)]
    Mkt$Date <- as.POSIXct(Mkt$Date, format = '%d/%m/%Y')
    Mkt_xts <- xts(Mkt[, c(2,3,4,5)], Mkt$Date)
  }
}
```

113

Appendix A. R Code

```r
hh <- as.data.frame(CSPHammer(Mkt_xts))
hi <- as.data.frame(CSPInvertedHammer(Mkt_xts))
Mkt <- cbind(Mkt, hh)
Mkt <- cbind(Mkt, hi)
a <- candle_hammer(Mkt, SLoss, nm[i])

res15 <- run_candle_hammer(fil ,0 , nm)
res15[misc_col] <- 'Hammer Candlestick'

# Add to total results
total_res <- rbind(total_res, res15)

# latex table
dat <- res15[,c(1,3,5,6,7)]
dig <- 2
cap = c('Results from a system based on the Hammer and Inverted Hammer
candlestick patterns. ','Results from a system based on the Hammer and Inverted Hammer
candlestick patterns')
lab = 'tab:hammer_results'
filename = '../Tables/chp_ta_hammer.tex'
inclrnam = FALSE
print_xt(dat, dig, cap, lab, al, filename, inclrnam)

# plus aroon
run_candle_hammer_aroon <- function (fil, SLoss, nm) {
  df10 <- as.data.frame(matrix(seq(11), nrow = 1, ncol = 11))
  for (i in 1:length(fil)) {
    Mkt <- read.csv(fil[i], stringsAsFactors = FALSE)
    Mkt$Date <- as.POSIXct(Mkt$Date, format = '%d/%m/%Y')
    Mkt_xts <- xts(Mkt[,c(2,3,4,5)], Mkt$Date)
    hh <- as.data.frame(CSPHammer(Mkt_xts))
    hi <- as.data.frame(CSPInvertedHammer(Mkt_xts))
    Mkt <- cbind(Mkt, hh)
    Mkt <- cbind(Mkt, hi)
    a <- aroon(Mkt, Close, n=20)
    Mkt <- cbind(Mkt, a)
    a <- candle_hammer_aroon(Mkt, SLoss, nm[i])
    df10 <- rbind(df10, a)
  }
  df.name <- names(a)
  names(df10) <- df.name
  df10 <- df10[-1,]
  return(df10)
}

res15a <- run_candle_hammer_aroon(fil, 0, nm)
```

latex table
dat <- res15a[,c(1,3,5,6,7)]
dig <- 2
cap = c("Results from a system based on the Hammer and Inverted Hammer
candlestick patterns occurring in a downtrend as defined by the aroon value."
 ,
 "Results from a system based on the Hammer and Inverted Hammer
candlestick patterns occurring in a downtrend")
lab = "tab:hammer_aroon_results"
filename = "../Tables/chp_ta_hammer_d_trend.tex"
iinclrnam = FALSE
print_xt(dat,dig,cap,lab,al,filename,inclrnam)

----------------- Engulfing Candlestick -------------------
run_candle_engulf <- function(fil,SLoss,nm){
df10 <- as.data.frame(matrix(seq(11),nrow=1,ncol=11))
for(i in 1:length(fil)){
 Mkt <- read.csv(fil[i],stringsAsFactors = FALSE)
 #create xts obj
 Mkt$Date <- as.POSIXct(Mkt$Date,format="%d/%m/%Y")
 Mkt_xts <- xts(Mkt[,c(2,3,4,5)],Mkt$Date)
 en <- as.data.frame(CSPEngulfing(Mkt_xts))
 #use data frame again
 Mkt <- cbind(Mkt,en)
 a <- candle_engulf(Mkt,SLoss, nm[i])
 df10 <- rbind(df10,a)
}
df.name <- names(a)
names(df10) <- df.name
df10 <- df10[-1,]
return(df10)
}
res16 <- run_candle_engulf(fil,0,nm)
res16[misc_col] <- 'Engulfing Candlestick'

Add to total results
total_res <- rbind(total_res, res16)

latex table
dat <- res16[,std6]
dig <- 2
cap = c("Results from a system based on the Engulfing candlestick pattern.",
 "Results from a system based on the Engulfing candlestick pattern")
lab = "tab:engulf_results"
filename = "../Tables/chp_ta_englf.tex"
iinclrnam = FALSE
print_xt(dat,dig,cap,lab,al,filename,inclrnam)

---------- Engulfing Candlestick with Aroon
run_candle_engulf_aroon <- function(fil,SLoss,nm){
df10 <- as.data.frame(matrix(seq(11),nrow=1,ncol=11))
for (i in 1:length(fil)) {
 Mkt <- read.csv(fil[i], stringsAsFactors = FALSE)
 # create xts obj
 Mkt$Date <- as.POSIXct(Mkt$Date, format = '%d/%m/%Y')
 Mkt_xts <- xts(Mkt[, c(2, 3, 4, 5)], Mkt$Date)
 en <- as.data.frame(CSPEngulfing(Mkt_xts))
 # use data frame again
 Mkt <- cbind(Mkt, en)
 ar <- aroon(Mkt$Close, n = 20)
 Mkt <- cbind(Mkt, ar)
 a <- candle_engulf_aroon(Mkt, SLoss, nm[i])
 df10 <- rbind(df10, a)
}

df.name <- names(a)
names(df10) <- df.name
df10 <- df10[-1,]
return(df10)

res16a <- run_candle_engulf_aroon(fil, 0, nm)
res16a["misc_col"] <- "Engulfing Candlestick in Trend"
Add to total results
total_res <- rbind(total_res, res16a)

latex table
dat <- res16a[, std6]
dig <- 2
cap = c('Results from a system based on the Engulfing candlestick pattern in a trending market.',
 'Results from a system based on the Engulfing candlestick pattern in a trending market')
lab = 'tab: engulf_aroon_results'
filename = '../Tables/chp_ta_englf_aroon.tex'
inclrnam = FALSE
print_xt(dat, dig, cap, lab, al, filename, inclrnam)

-- Doji Candlestick --
run_candle_doji_aroon <- function(fil, SLoss, nm){
 df10 <- as.data.frame(matrix(seq(11), nrow = 1, ncol = 11))
 for (i in 1:length(fil)) {
 Mkt <- read.csv(fil[i], stringsAsFactors = FALSE)
 # create xts obj
 Mkt$Date <- as.POSIXct(Mkt$Date, format = '%d/%m/%Y')
 Mkt_xts <- xts(Mkt[, c(2, 3, 4, 5)], Mkt$Date)
 dj <- as.data.frame(CSPDoji(Mkt_xts))
 # back to data frame
 Mkt <- cbind(Mkt, dj)
 ar <- aroon(Mkt$Close, n = 20)
 Mkt <- cbind(Mkt, ar)
 a <- candle_doji_aroon(Mkt, SLoss, nm[i])
 df10 <- rbind(df10, a)
 }
 df.name <- names(a)
Appendix A. R Code

```r
771 names(df10) <- df.name
772 df10 <- df10[-1,]
773 return(df10)
774 }
775
776 res17 <- run_candle_doji_aroon(fil,0,nm)
777 res17[misc_col] <- 'Doji Candlestick'
778
779 # Add to total results
780 total_res <- rbind(total_res, res17)
781
782 # latex table
783 dat <- res17[,std6]
784 dig <- 2
785 cap = c('Results from a system based on the Doji candlestick pattern in a trending market','
786 'Results from a system based on the Doji candlestick pattern in a trending market')
787 lab = 'tab:doji_aroon_results'
788 dirname = '../Tables/chp_ta_doji.tex'
789 inclrnam=FALSE
790 print_xt(dat,dig,cap,lab,al,dirname,inclrnam)
791
792 #--------------------------------------------------------
793 # -- Generate Summary tables for Appendix C --------------
794 # 1. Dax
795 colnames(total_res)[11] <- 'Methodology'
796 Dx <- total_res[total_res$Mkt == 'DAX',]
797 Dx2 <- Dx[c(11,3,4,7,10)]
798
799 # latex table
800 dat <- Dx2
801 dig <- 2
802 cap = c('Chapter 4 Dax Results','
803 'Chapter 4 Dax Results')
804 lab = 'tab:chp6:dax_summary'
805 dirname = '../Tables/chp_6_dax_summary.tex'
806 inclrnam=FALSE
807 print_xt(dat,dig,cap,lab,al,dirname,inclrnam)
808
809 # 2. CAC
810 Cc <- total_res[total_res$Mkt == 'CAC',]
811 Cc2 <- Cc[c(11,3,4,7,10)]
812
813 # latex table
814 dat <- Cc2
815 dig <- 2
816 cap = c('Chapter 4 CAC Results','
817 'Chapter 4 CAC Results')
818 lab = 'tab:chp6:cac_summary'
819 dirname = '../Tables/chp_6_cac_summary.tex'
820 inclrnam=FALSE
821 print_xt(dat,dig,cap,lab,al,dirname,inclrnam)
822
823 # 3. FTSE
```
Appendix A. R Code

```r
Ft <- total_res[total_res$Mkt == 'FTSE',]
Ft2 <- Ft[c(11,3,4,7,10)]

dat <- Ft2
dig <- 2
cap = c('Chapter 4 FTSE Results',
        'Chapter 4 FTSE Results')
lab = 'tab:chp6:ftse_summary'
filename = '../Tables/chp_6_ftse_summary.tex'
inclrnam=FALSE
print_xt(dat,dig,cap,lab,al,fname,inclrnam)

# latex table
Dw <- total_res[total_res$Mkt == 'Dow',]
Dw2 <- Dw[c(11,3,4,7,10)]

dat <- Dw2
dig <- 2
cap = c('Chapter 4 Dow Results',
        'Chapter 4 Dow Results')
lab = 'tab:chp6:dow_summary'
filename = '../Tables/chp_6_dow_summary.tex'
inclrnam=FALSE
print_xt(dat,dig,cap,lab,al,fname,inclrnam)

# latex table
Nk <- total_res[total_res$Mkt == 'Nikkei',]
Nk2 <- Nk[c(11,3,4,7,10)]

dat <- Nk2
dig <- 2
cap = c('Chapter 4 Nikkei Results',
        'Chapter 4 Nikkei Results')
lab = 'tab:chp6:nik_summary'
filename = '../Tables/chp_6_nik_summary.tex'
inclrnam=FALSE
print_xt(dat,dig,cap,lab,al,fname,inclrnam)

# latex table
Oz <- total_res[total_res$Mkt == 'AORD',]
Oz2 <- Oz[c(11,3,4,7,10)]

dat <- Oz2
dig <- 2
cap = c('Chapter 4 AORD Results',
        'Chapter 4 AORD Results')
lab = 'tab:chp6:aord_summary'
filename = '../Tables/chp_6_aord_summary.tex'
inclrnam=FALSE
print_xt(dat,dig,cap,lab,al,fname,inclrnam)
```
A.1.2 Naive Systems

A.1.2.1 Naive Long System

```r
NaiveLongSystem <- function(Mkt, SLoss, MktName) {
  # Calculates the profit/loss from simply trading long.
  # Mkt: market data
  # SLoss: stop loss
  # MktName: market's name for print out
  # Returns:
  # results vector.
  
  results <- createResultsVector(MktName, SLoss)

  # Buy Long
  Mkt$Long <- Mkt$Close - Mkt$Open
  results["LongPL"] <- round(sum(Mkt$Long, na.rm=TRUE))
  # Adj for SLoss
  if (SLoss < 0) {
    Mkt$Long <- ifelse((Mkt$Low - Mkt$Open) < SLoss, SLoss, Mkt$Long)
    results["LongPL"] <- round(sum(Mkt$Long, na.rm=TRUE))
  }

  Stats <- calcStats(Mkt$Long)
  results[5:7] <- Stats

  return(results)
}
```

A.1.2.2 Naive Long System trading close to close

```r
NaiveLongSystem2 <- function(Mkt, SLoss, MktName) {
  # Calculates the profit/loss from simply trading long each day.
  # Opening price is previous day’s close price.
  # Args:
  # Mkt: market data
  # SLoss: stop loss
  # MktName: name of market data
  # Returns:
  # results vector.
  
  results <- createResultsVector(MktName, SLoss)
```

END
Appendix A. R Code

A.1.2.3 Naive Reversing System

```
NaiveReversePrev <- function(Mkt, SLoss, MktName) {
  # Calculates the profit/loss from trading according to a naive idea of trading
  # in the opposite direction to the previous day.
  # Mkt: market data
  # SLoss: stop loss
  # MktName: market's name for print out
  # Returns:
  # results vector

  results <- createResultsVector(MktName, SLoss)
  Mkt$pl <- Mkt$Close - Mkt$Open
  Mkt$prevPL <- c(NA, Mkt$pl[ - length(Mkt$pl)])

  # Trade Long
  Mkt$Long <- ifelse(Mkt$prevPL < 0, Mkt$Close - Mkt$Open, NA)
  results["LongPL"] <- round(sum(Mkt$Long, na.rm=TRUE))
  # Adj for SLoss
  if (SLoss < 0) {
    Mkt$Long <- ifelse((Mkt$Low - Mkt$Open) < SLoss, SLoss, Mkt$Long)
    results["LongPL"] <- round(sum(Mkt$Long, na.rm=TRUE))
  }

  Stats <- calcStats(Mkt$Long)
  results[5:7] <- Stats
  return(results)
}
```

RCode/NaiveLongSystem2.R
if (SLoss < 0) {
 Mkt$Short <- ifelse(Mkt$prevPL > 0,
 ifelse((Mkt$Open - Mkt$High) < SLoss, SLoss, Mkt$Short),
 Mkt$Short)
 results["ShortPL"] <- round(sum(Mkt$Short, na.rm=TRUE))
}

Stats <- calcStats(Mkt$Long)
results[5:7] <- Stats
Stats <- calcStats(Mkt$Short)
results[8:10] <- Stats
return(results)

A.1.3 Trend Detection Systems

A.1.3.1 SMA

BaseSystem1SMA <- function(Mkt, sma, SLoss, MktName) {
 # Calculates the profit/loss from trading according to SMA.
 #
 # Mkt: market data
 # SLoss: stop loss
 # MktName: market's name for print out
 # Returns:
 # profit/loss from trading according to SMA.

 results <- createResultsVector(MktName, SLoss)

 sma.value <- SMA(Mkt["Open"], sma) #create sma vector
 Mkt <- cbind(Mkt, sma.value) #add sma vector as new col

 # Trade Long
 Mkt$Long <- ifelse(Mkt$Open > Mkt$sma.value, Mkt$Close - Mkt$Open, NA)
 results["LongPL"] <- round(sum(Mkt$Long, na.rm=T))
 if (SLoss < 0) {
 Mkt$Long <- ifelse(Mkt$Open > Mkt$sma.value,
 ifelse((Mkt$Low - Mkt$Open) < SLoss, SLoss, Mkt$Long),
 Mkt$Long)
 results["LongPL"] <- round(sum(Mkt$Long, na.rm=T))
 }

 # Trade Short
 Mkt$Short <- ifelse(Mkt$Open < Mkt$sma.value, Mkt$Open - Mkt$Close, NA)
 results["ShortPL"] <- round(sum(Mkt$Short, na.rm=T))
 if (SLoss < 0) {
 Mkt$Short <- ifelse(Mkt$Open < Mkt$sma.value,
 ifelse((Mkt$Open - Mkt$High) < SLoss, SLoss, Mkt$Short),
 Mkt$Short),
}
Appendix A. R Code

```r
# calculate Long results
results[6:7] <- calcStats(Mkt$Long)

# calculate Short results
results[8:10] <- calcStats(Mkt$Short)

if (SLoss == 0){
} else {
}

return(results)
```

RCode/SMA_sys.R

A.1.3.2 MACD - trend indicator

```r
# MACD cross-over system.
# Args:
# Mkt: market data
# SLoss: stop loss
# MktName: market’s name for print out
# Returns:
# results vector.
results <- createResultsVector(MktName, SLoss)

# Trade Long
Mkt$Long <- ifelse(Mkt$macd > Mkt$signal, Mkt$Close - Mkt$Open, NA)
results["LongPL"] <- round(sum(Mkt$Long, na.rm=TRUE))

# Adj for SLoss
if (SLOSS < 0) {
  Mkt$Long <- ifelse(Mkt$macd > Mkt$signal,
                      ifelse((Mkt$Low-Mkt$Open) < SLoss, SLoss, Mkt$Long),
                      Mkt$Long)
  results["LongPL"] <- round(sum(Mkt$Long, na.rm=TRUE))
}

# Trade Short
Mkt$Short <- ifelse(Mkt$macd < Mkt$signal, Mkt$Open - Mkt$Close, NA)
results["ShortPL"] <- round(sum(Mkt$Short, na.rm=TRUE))

# Adj for SLoss
if (SLOSS < 0) {
  Mkt$Short <- ifelse(Mkt$macd < Mkt$signal,
                      ifelse((Mkt$Close-Mkt$Open) < SLoss, SLoss, Mkt$Short),
                      Mkt$Short)
  results["ShortPL"] <- round(sum(Mkt$Short, na.rm=TRUE))
} 
```

A.1.3.2 MACD - trend indicator
Appendix A. R Code

```r
ifelse((Mkt$Open - Mkt$High) < SLoss, SLoss, Mkt$Short),
Mkt$Short)
results["ShortPL"] <- round(sum(Mkt$Short, na.rm=TRUE))
}

#calculate Long results
results[5:7] <- calcStats(Mkt$Long)
#calculate Short results
results[8:10] <- calcStats(Mkt$Short)
return(results)
```

RCode/MACD_XO.R

A.1.3.3 Aroon trend indicator

```r
aroon_sys <- function(Mkt, SLoss, MktName){
  # uses Aroon indicator to trigger trades
  #
  # Args:
  # Mkt: Data to run system on
  # SLoss: Stop Loss (if 0 not used)
  # MktName: Name of market
  #
  # Returns:
  # results vector.

  results <- createResultsVector(MktName, SLoss)
  # Trade Long
  Mkt$Long <- ifelse(Mkt$aroonUp >= 70, Mkt$Close - Mkt$Open, NA)
  results["LongPL"] <- round(sum(Mkt$Long, na.rm=TRUE))
  #Adj for SLoss
  if (SLoss < 0) {
    Mkt$Long <- ifelse(Mkt$aroonUp >= 70,
    ifelse((Mkt$Low - Mkt$Open) < SLoss, SLoss, Mkt$Long),
    Mkt$Long)
    results["LongPL"] <- round(sum(Mkt$Long, na.rm=TRUE))
  }
  # Trade Short
  Mkt$Short <- ifelse(Mkt$aroonDn >= 70, Mkt$Open - Mkt$Close, NA)
  results["ShortPL"] <- round(sum(Mkt$Short, na.rm=TRUE))
  #Adj for SLoss
  if (SLoss < 0) {
    Mkt$Short <- ifelse(Mkt$aroonDn >= 70,
    ifelse((Mkt$Open - Mkt$High) < SLoss, SLoss, Mkt$Short),
    Mkt$Short)
    results["ShortPL"] <- round(sum(Mkt$Short, na.rm=TRUE))
  }
  #calculate Long results
  results[5:7] <- calcStats(Mkt$Long)
```
A.1.4 Market Reversal Indicator

A.1.4.1 SAR reversal indicator

```r
sar_sys <- function(Mkt, SLoss, MktName){
  # uses Parabolic SAR indicator to trigger trades
  # Args:
  # Mkt: Data
  # SLoss: Stop Loss (if 0 not used)
  # MktName: Name of market
  # Returns:
  # results vector.

  results <- createResultsVector(MktName, SLoss)

  Mkt$prevsar <- c(NA, Mkt$sar[-length(Mkt$sar)])

  # Trade Long
  Mkt$Long <- ifelse(Mkt$Open > Mkt$prevsar, Mkt$Close - Mkt$Open, NA)
  results["LongPL"] <- round(sum(Mkt$Long, na.rm=TRUE))
  #Adj for SLoss
  if (SLoss < 0) {
    Mkt$Long <- ifelse(Mkt$Open > Mkt$prevsar,
                        ifelse((Mkt$Low - Mkt$Open) < SLoss, SLoss, Mkt$Long),
                        Mkt$Long)
    results["LongPL"] <- round(sum(Mkt$Long, na.rm=TRUE))
  }

  # Trade Short
  Mkt$Short <- ifelse(Mkt$Open < Mkt$prevsar, Mkt$Open - Mkt$Close, NA)
  results["ShortPL"] <- round(sum(Mkt$Short, na.rm=TRUE))
  if (SLoss < 0) {
    Mkt$Short <- ifelse(Mkt$Open < Mkt$prevsar,
                         ifelse((Mkt$Open - Mkt$High) < SLoss, SLoss, Mkt$Short),
                         Mkt$Short)
    results["ShortPL"] <- round(sum(Mkt$Short, na.rm=TRUE))
  }

  #calculate Long results
  results[5:7] <- calcStats(Mkt$Long)

  #calculate Short results
}
```

Appendix A. R Code

#calculate Short results
results[8:10] <- calcStats(Mkt$Short)
return(results)
```
A.1.4.2 MACD as Reversal Indicator

```r
MACD_OB <- function(Mkt, SLoss, MktName, lw, up)
{
 # MACD over-bought/sold system.
 # Args:
 # Mkt: market data
 # SLoss: stop loss
 # MktName: market's name for print out
 # lw: value of MACD that signals end of bear runs and rev
 # up: value of MACD that signals end of bull runs and rev
 # Returns:
 # results vector.

 results <- createResultsVector(MktName, SLoss)

 # Trade Long
 Mkt$Long <- ifelse(Mkt$macd < lw, Mkt$Close - Mkt$Open, NA)
 results["LongPL"] <- round(sum(Mkt$Long, na.rm = TRUE))
 # Adj for SLoss
 if (SLoss < 0) {
 Mkt$Long <- ifelse(Mkt$macd < lw,
 ifelse((Mkt$Low - Mkt$Open) < SLoss, SLoss, Mkt$Long),
 Mkt$Long)
 results["LongPL"] <- round(sum(Mkt$Long, na.rm = TRUE))
 }

 # Trade Short
 Mkt$Short <- ifelse(Mkt$macd > up, Mkt$Open - Mkt$Close, NA)
 results["ShortPL"] <- round(sum(Mkt$Short, na.rm = TRUE))
 if (SLoss < 0) {
 Mkt$Short <- ifelse(Mkt$macd > up,
 ifelse((Mkt$Open - Mkt$High) < SLoss, SLoss, Mkt$Short),
 Mkt$Short)
 results["ShortPL"] <- round(sum(Mkt$Short, na.rm = TRUE))
 }

 Stats <- calcStats(Mkt$Long)
 results[5:7] <- Stats

 Stats <- calcStats(Mkt$Short)
 results[8:10] <- Stats

 return(results)
}
```
A.1.4.3 Stochastic reversal indicator

```r
stoch_sys <- function (Mkt, SLoss, MktName) {
 # Trading system using Stochastic Oscillator to trigger trades
 #
 # Args:
 # Mkt: Data
 # SLoss: Stop Loss (if 0 not used)
 # MktName: Name of market
 # Returns:
 # results vector.
 #
 results <- createResultsVector(MktName, SLoss)

 Mkt$PrevFastD <- c(NA, Mkt$fastD[1:length(Mkt$fastD)])
 Mkt$PrevSlowD <- c(NA, Mkt$slowD[1:length(Mkt$slowD)])

 # Trade Long
 Mkt$Long <- ifelse(Mkt$PrevFastD > Mkt$PrevSlowD, Mkt$Close - Mkt$Open, NA)
 results["LongPL"] <- round(sum(Mkt$Long, na.rm=TRUE))
 if (SLoss < 0) {
 Mkt$Long <- ifelse(Mkt$PrevFastD > Mkt$PrevSlowD,
 ifelse((Mkt$Low - Mkt$Open) < SLoss, SLoss, Mkt$Long),
 Mkt$Long)
 results["LongPL"] <- round(sum(Mkt$Long, na.rm=TRUE))
 }

 # Trade Short
 Mkt$Short <- ifelse(Mkt$PrevFastD < Mkt$PrevSlowD, Mkt$Open - Mkt$Close, NA)
 results["ShortPL"] <- round(sum(Mkt$Short, na.rm=TRUE))
 if (SLoss < 0) {
 Mkt$Short <- ifelse(Mkt$PrevFastD < Mkt$PrevSlowD,
 ifelse((Mkt$Open - Mkt$High) < SLoss, SLoss, Mkt$Short),
 Mkt$Short)
 results["ShortPL"] <- round(sum(Mkt$Short, na.rm=TRUE))
 }

 Stats <- calcStats(Mkt$Long)
 results[5:7] <- Stats

 Stats <- calcStats(Mkt$Short)
 results[8:10] <- Stats

 return(results)
}
```

RCode/MAODB.R
A.1.4.4 Rate of Change (ROC)

```r
roc_sys <- function(Mkt, SLoss, MktName, lw, up){
 # Rate of Change (ROC) system.
 #
 # Args:
 # Mkt: market data
 # SLoss: stop loss
 # MktName: market's name for print out
 # lw: value of ROC for reversal up
 # up: value of ROC for reversal down
 #
 # Returns:
 # results vector.

 results <- createResultsVector(MktName, SLoss)
 Mkt$prevROC <- c(NA, Mkt$roc[- length(Mkt$roc)])

 # Trade Long
 Mkt$Long <- ifelse(Mkt$prevROC < lw, Mkt$Close - Mkt$Open, NA)
 results["LongPL"] <- round(sum(Mkt$Long, na.rm=TRUE))
 #Adj for SLoss
 if (SLoss < 0) {
 Mkt$Long <- ifelse(Mkt$prevROC < lw,
 ifelse((Mkt$Low-Mkt$Open) < SLoss, SLoss, Mkt$Long),
 Mkt$Long)
 results["LongPL"] <- round(sum(Mkt$Long, na.rm=TRUE))
 }

 # Trade Short
 Mkt$Short <- ifelse(Mkt$prevROC > up, Mkt$Open - Mkt$Close, NA)
 results["ShortPL"] <- round(sum(Mkt$Short, na.rm=TRUE))
 #Adj for SLoss
 if (SLoss < 0) {
 Mkt$Short <- ifelse(Mkt$prevROC > up,
 ifelse((Mkt$Open-Mkt$High) < SLoss, SLoss, Mkt$Short),
 Mkt$Short)
 results["ShortPL"] <- round(sum(Mkt$Short, na.rm=TRUE))
 }

 Stats <- calcStats(Mkt$Long)
 results[5:7] <- Stats

 Stats <- calcStats(Mkt$Short)
 results[8:10] <- Stats

 return(results)
}
```

RCode/ROC.R
A.1.5 Breakout Systems

A.1.5.1 Daily High / Low Breakout System

```r
BaseSystem2Bout <- function(Mkt, SLoss, MktName){
 # Trading system based on the break out of the previous day's high/low value.
 #
 # Mkt: market data
 # SLoss: stop loss
 # MktName: market's name for print out
 # Returns:
 # results vector.

 results <- createResultsVector(MktName, SLoss)

 Mkt$prevHigh <- c(NA, Mkt$High[-length(Mkt$High)])
 Mkt$prevLow <- c(NA, Mkt$Low[-length(Mkt$Low)])

 # Break out high
 Mkt$Long <- ifelse(Mkt$High > Mkt$prevHigh, Mkt$Close - Mkt$prevHigh, NA)
 results["LongPL"] <- round(sum(Mkt$Long, na.rm=TRUE))

 if (SLoss < 0) {
 Mkt$Long <- ifelse(Mkt$High > Mkt$prevHigh,
 ifelse((Mkt$Low - Mkt$Open) < SLoss, SLoss, Mkt$Long), Mkt$Long)
 results["LongPL"] <- round(sum(Mkt$Long, na.rm=TRUE))
 }

 # Break out low
 Mkt$Short <- ifelse(Mkt$Low < Mkt$prevLow, Mkt$prevLow - Mkt$Close, NA)
 results["ShortPL"] <- round(sum(Mkt$Short, na.rm=TRUE))

 if (SLoss < 0) {
 Mkt$Short <- ifelse(Mkt$Low < Mkt$prevLow,
 ifelse((Mkt$Open - Mkt$High) < SLoss, SLoss, Mkt$Short), Mkt$Short)
 results["ShortPL"] <- round(sum(Mkt$Short, na.rm=TRUE))
 }

 Stats <- calcStats(Mkt$Long)
 results[5:7] <- Stats

 Stats <- calcStats(Mkt$Short)
 results[8:10] <- Stats

 return(results)
}
```

A.1.5.2 Breakout of 90% Quantile Level
Appendix A. R Code

```r
BaseSystem3Quant902 <- function(Mkt, SLoss, MktName) {
 # Calculates the profit/loss from trading a breakout of a 90% quantile move.
 #
 # Mkt: market data
 # SLoss: stop loss
 # MktName: market's name for print out
 # Returns:
 # results vector.
 results <- createResultsVector(MktName, SLoss)

 Mkt$OH <- Mkt$High - Mkt$Open
 Mkt$OL <- Mkt$Open - Mkt$Low
 Mkt$mn <- ifelse(Mkt$OH > MktOL, MktOL, Mkt$OH)
 qq <- quantile(Mkt$mn, probs = 0.90)

 # Trade Long
 Mkt$Long <- ifelse((Mkt$High - Mkt$Open) > qq, Mkt$Close - (Mkt$Open + qq), NA)
 results["LongPL"] <- round(sum(Mkt$Long, na.rm = TRUE))
 #Adj for SLoss
 if (SLoss < 0) {
 Mkt$Long <- ifelse((Mkt$High - Mkt$Open) > qq,
 ifelse((Mkt$Low - Mkt$Open) < SLoss, SLoss, Mkt$Long),
 Mkt$Long)
 results["LongPL"] <- round(sum(Mkt$Long, na.rm = TRUE))
 }

 # Trade Short
 Mkt$Short <- ifelse((Mkt$Open - Mkt$Low) > qq, (Mkt$Open - qq) - Mkt$Close, NA)
 results["ShortPL"] <- round(sum(Mkt$Short, na.rm = TRUE))
 #Adj for SLoss
 if (SLoss < 0) {
 Mkt$Short <- ifelse((Mkt$Open - Mkt$Low) > qq,
 ifelse((Mkt$Open - Mkt$High) < SLoss, SLoss, Mkt$Short),
 Mkt$Short)
 results["ShortPL"] <- round(sum(Mkt$Short, na.rm = TRUE))
 }

 Stats <- calcStats(Mkt$Long)
 results[5:7] <- Stats
 Stats <- calcStats(Mkt$Short)
 results[8:10] <- Stats
 return(results)
}
```

RCode/Quant90_sys.R
A.1.6 Candlestick Systems

A.1.6.1 Hammer and Inverted Hammer Candlestick Pattern

```r
Trading system based on the Hammer candlestick pattern.
Mkt: market data
SLoss: stop loss
MktName: market’s name for print out
Returns:
results vector.
results <- createResultsVector(MktName, SLoss)

Mkt$prev_Hammer <- c(NA, Mkt$Hammer[-length(Mkt$Hammer)])
Mkt$prev_inv_Hammer <- c(NA, Mkt$InvertedHammer[-length(Mkt$InvertedHammer)])

Trade Long
Mkt$Long <- ifelse(Mkt$prev_Hammer == TRUE | Mkt$prev_inv_Hammer == TRUE, Mkt$Close - Mkt$Open, NA)
results["LongPL"] <- round(sum(Mkt$Long, na.rm=TRUE))

Adj for SLoss
if (SLoss < 0) {
 Mkt$Long <- ifelse((Mkt$prev_Hammer == TRUE | Mkt$prev_inv_Hammer == TRUE) > 0,
 ifelse((Mkt$Low - Mkt$Open) < SLoss, SLoss, Mkt$Long),
 Mkt$Long)
 results["LongPL"] <- round(sum(Mkt$Long, na.rm=TRUE))
}

Stats <- calcStats(Mkt$Long)
results[5:7] <- Stats
return(results)
```

A.1.6.2 Hammer and Inverted Hammer Candlestick Pattern in a Trending Market

```r
Trading system based on the Hammer candlestick pattern occurring in a
trending market.
Mkt: market data
SLoss: stop loss
MktName: market’s name for print out
Returns:
results vector.
```

RCode/Candle_Hammer.R
Appendix A. \textit{R Code}

\begin{verbatim}
results <- createResultsVector(MktName, SLoss)

#browser()
Mkt$prev_Aroon_UP <- c(NA, Mkt$aroonUp[-length(Mkt$aroonUp)]
Mkt$prev_Aroon_DN <- c(NA, Mkt$aroonDn[-length(Mkt$aroonDn)]
Mkt$prev_Hammer <- c(NA, Mkt$Hammer[-length(Mkt$Hammer)]
Mkt$prev_Inv_Hammer <- c(NA, Mkt$InvertedHammer[-length(Mkt$InvertedHammer)]

# Trade Long
Mkt$Long <- ifelse(Mkt$prev_Aroon_DN >= 70, ifelse(Mkt$prev_Hammer ==T | Mkt$prev_Inv_Hammer ==T, Mkt$Close - Mkt$Open , NA) ,NA)
results["LongPL"] <- round(sum(Mkt$Long, na.rm=TRUE))

#Adj for SLoss
if (SLoss < 0) {
  Mkt$Long <- ifelse((Mkt$High - Mkt$Open) > 0,
  ifelse((Mkt$Low - Mkt$Open) < SLoss, SLoss, Mkt$Long),
  Mkt$Long)
  results["LongPL"] <- round(sum(Mkt$Long, na.rm=TRUE))
}

Stats <- calcStats(Mkt$Long)
results[6:7] <- Stats
return(results)
\end{verbatim}

\texttt{RCode/Candle_Hammer_aroon.R}

\section*{A.1.6.3 Engulfing Candlestick Pattern}

\begin{verbatim}
candle_engulf <- function(Mkt, SLoss, MktName){
  # Trading system based on the Engulfing candlestick pattern.  
  # Mkt: market data
  # SLoss: stop loss
  # MktName: market’s name for print out
  # Returns:
  # results vector.
  results <- createResultsVector(MktName, SLoss)
  Mkt$prev_Bull_Engulf <- c(NA, Mkt$Bull_Engulfing[-length(Mkt$Bull_Engulfing)]
  Mkt$prev_Bear_Engulf <- c(NA, Mkt$Bear_Engulfing[-length(Mkt$Bear_Engulfing)]

  # Trade Long
  Mkt$Long <- ifelse(Mkt$prev_Bull_Engulf==TRUE, Mkt$Close-Mkt$Open, NA)
  results["LongPL"] <- round(sum(Mkt$Long, na.rm=TRUE))
  # Adj for SLoss
\end{verbatim}
Appendix A. R Code

```r
if (SLoss < 0) {
 Mkt$Long <- ifelse(Mkt$prev_Bull_Engulf == TRUE,
 ifelse((Mkt$Low-Mkt$Open) < SLoss, SLoss, Mkt$Long),
 Mkt$Long)
 results["LongPL"] <- round(sum(Mkt$Long, na.rm=TRUE))
}

Trade Short
Mkt$Short <- ifelse(Mkt$prev_Bear_Engulf == TRUE, Mkt$Open-Mkt$Close,NA)
results["ShortPL"] <- round(sum(Mkt$Short, na.rm=TRUE))

Adj for SLoss
if (SLoss < 0) {
 Mkt$Short <- ifelse(Mkt$prev_Bear_Engulf == TRUE,
 ifelse((Mkt$Open-Mkt$High) < SLoss, SLoss, Mkt$Short),
 Mkt$Short)
 results["ShortPL"] <- round(sum(Mkt$Short, na.rm=TRUE))
}

Stats <- calcStats(Mkt$Long)
results[5:7] <- Stats

Stats <- calcStats(Mkt$Short)
results[8:10] <- Stats

return(results)
```

A.1.6.4 Engulfing Candlestick Pattern in a Trending Market

```r
candle_engulf_aroon <- function(Mkt, SLoss, MktName){
 # Trading system based on the Engulfing candlestick pattern occurring in a
 # trending market.
 #
 # Mkt: market data
 # SLoss: stop loss
 # MktName: market’s name for print out
 # Returns:
 # results vector.
 #
 results <- createResultsVector(MktName, SLoss)
 #browser()
 Mkt$prev_Aroon_UP <- c(NA, Mkt$aroonUp[-length(Mkt$aroonUp)])
 Mkt$prev_Aroon_DOWN <- c(NA, Mkt$aroonDn[-length(Mkt$aroonDn)])
 Mkt$prev_Bull_Engulf <- c(NA, Mkt$Bull_Engulfing[-length(Mkt$Bull_Engulfing)])
 Mkt$prev_Bear_Engulf <- c(NA, Mkt$Bear_Engulfing[-length(Mkt$Bear_Engulfing)])
 # Trade Long
```

RCode/Candle_Engulf.R
Appendix A. R Code

```r
Mkt$Long <- ifelse(Mkt$prev_Aroon_DN >= 70, ifelse(Mkt$prev_Bull_Engulf==T, Mkt$Close-Mkt$Open, NA), NA)
results["LongPL"] <- round(sum(Mkt$Long, na.rm=TRUE))
#Adj for SLoss
if (SLoss < 0) {
 Mkt$Long <- ifelse(((Mkt$High - Mkt$Open) > 0,
 ifelse(((Mkt$Low-Mkt$Open) < SLoss, SLoss, Mkt$Long),
 Mkt$Long)
 results["LongPL"] <- round(sum(Mkt$Long, na.rm=TRUE))
}
#Trade Short
Mkt$Short <- ifelse(Mkt$prev_Aroon_UP >= 70, ifelse(Mkt$prev_Bull_Engulf==T,
 Mkt$Close-Mkt$Open, NA), NA)
results["ShortPL"] <- round(sum(Mkt$Short, na.rm=TRUE))
#Adj for SLoss
if (SLoss < 0) {
 Mkt$Short <- ifelse(((Mkt$Open - Mkt$Low) > 0,
 ifelse(((Mkt$Open-Mkt$High) < SLoss, SLoss, Mkt$Short),
 Mkt$Short)
 results["ShortPL"] <- round(sum(Mkt$Short, na.rm=TRUE))
}
Stats <- calcStats(Mkt$Long)
results[5:7] <- Stats
Stats <- calcStats(Mkt$Short)
results[8:10] <- Stats
return(results)
```

A.1.6.5 Doji Candlestick Pattern in a Trending Market

candle_doji_aroon <- function(Mkt, SLoss, MktName){
  # Trading system based on the Doji candlestick pattern occurring in a trending
  # market.
  #
  # Mkt: market data
  # SLoss: stop loss
  # MktName: market’s name for print out
  #
  # Returns:
  # results vector.
  #
  results <- createResultsVector(MktName, SLoss)
  #browser()
  Mkt$prev_Aroon_UP <- c( NA, Mkt$aroonUp[ - length(Mkt$aroonUp) ] )
}
Mkt$prev_Aroon_DN <- c(NA, Mkt$aroonDn[-length(Mkt$aroonDn)])
Mkt$prev_Doji <- c(NA, Mkt$Doji[-length(Mkt$Doji)])
Mkt$prev_Dragonfly <- c(NA, Mkt$DragonflyDoji[-length(Mkt$DragonflyDoji)])
Mkt$prev_Gravestone <- c(NA, Mkt$GravestoneDoji[-length(Mkt$GravestoneDoji)])

# Trade Long
Mkt$Long <- ifelse(Mkt$prev_Aroon_DN >= 70, ifelse(Mkt$prev_Doji == TRUE | Mkt$prev_Dragonfly == TRUE, Mkt$Close - Mkt$Open, NA), NA)
results["LongPL"] <- round(sum(Mkt$Long, na.rm=TRUE))

# Adj for SLoss
if (SLoss < 0) {
  Mkt$Long <- ifelse((Mkt$High - Mkt$Open) > 0,
                     ifelse((Mkt$Low - Mkt$Open) < SLoss, SLoss, Mkt$Long),
                     Mkt$Long)
  results["LongPL"] <- round(sum(Mkt$Long, na.rm=TRUE))
}

# Trade Short
Mkt$Short <- ifelse(Mkt$prev_Aroon_UP >= 70, ifelse(Mkt$prev_Doji == TRUE | Mkt$prev_Gravestone == TRUE, Mkt$Close - Mkt$Open, NA), NA)
results["ShortPL"] <- round(sum(Mkt$Short, na.rm=TRUE))

# Adj for SLoss
if (SLoss < 0) {
  Mkt$Short <- ifelse((Mkt$Open - Mkt$Low) > 0,
                       ifelse((Mkt$Open - Mkt$High) < SLoss, SLoss, Mkt$Short),
                       Mkt$Short)
  results["ShortPL"] <- round(sum(Mkt$Short, na.rm=TRUE))
}

Stats <- calcStats(Mkt$Long)
results[5:7] <- Stats

Stats <- calcStats(Mkt$Short)
results[8:10] <- Stats

return(results)

RCode/Candle_Doji_aroon.R

A.2 Chapter 5

The R code used to generate the results and tables in Chapter 5 is shown in listing A.2. This is followed by the individual files containing the algorithms used in the chapter.
library(forecast)
library(xtable)

#source
source("../RCode/Utils.R")
source("../RCode/es_1.R")
source("../RCode/ts_1.R")
source("../RCode/ts_2.R")
source("../RCode/ts_3.R")
source("../RCode/ts_3a.R")
source("../RCode/ts_4.R")
source("../RCode/NaiveReversePrev.R")

fil <- c("../Data/Dax_2000_d.csv",
          ".../Data/CAC_2000_d.csv",
          ".../Data/F100_2000_d.csv",
          ".../Data/Dow_2000_d.csv",
          ".../Data/N225_2000_d.csv",
          ".../Data/Oz_2000.csv")
nm <- c("DAX", "CAC", "FTSE", "Dow", "Nikkei", "AORD")

# Add Naive reverse prev for comparison purposes
# data frame will be fed into sub_df
df10 <- as.data.frame(matrix(seq(11),nrow=1,ncol=11))
NaiveRev <- run_NaiveReversePrev(fil, 0, nm)
std6 <- c(1,3,4,5,7,8,10)
misc_col <- 11

# -----------------------------------------------------------
# ---------- Base Systems
Mkt <- read.csv("../Data/Dax_2000_d.csv")
Mkt$Date[2999]
Mkt_ts <- ts(Mkt$Close)
Mkt_train <- window(Mkt_ts, end=2999.99)
Mkt_test <- window(Mkt_ts, start=3000)

# a. build the mean model
mean_model <- meanf(Mkt_train, h=5)
a <- accuracy(mean_model, Mkt_test) #out of sample
rownames(a) <- c('Mean Training Set', 'Mean Test Set')

# b. build the naive model
naive_model <- naive(Mkt_train, h=5)
b <- accuracy(naive_model, Mkt_test) #out of sample
rownames(b) <- c('Naive Training Set', 'Naive Test Set')

# c. build the drift model
drift_model <- rwf(Mkt_train, drift=TRUE, h=5)
c <- accuracy(drift_model, Mkt_test) #out of sample
rownames(c) <- c('Drift Training Set', 'Drift Test Set')

# combine results
d <- rbind(a,c)

# produce latex table
dat <- d[,c(2,3,4,5,6)]
dig <- 0
cap <- c("Error measures from mean and drift models.",
          "Error measures from mean and drift models")
lab = 'tab:chp_ts:sma'
filename = '../Tables/chp_ts_sma.tex'
inclrnam=TRUE
print_xt(dat,dig,cap,lab,al,filname,inclrnam)

# --- plot all three base systems on Dow
savepdf("chp_ts_dax1")
Mkt_act <- window(Mkt_ts, start=3020, end=3200)
plot.ts(Mkt_train,
    main="Simple Forecasting Methods",
    xlab="Days since 2000", ylab="DAX Closing Price",
    xlim=c(2, 3200))
lines(meanf(Mkt_train, h=350)$mean, lty=2)
lines(rwf(Mkt_train,drift=TRUE,h=350)$mean,lty=3)
legend("bottomright",lty=c(2,3),
    legend=c("Mean method","Drift method"))
dev.off () #savepdf end

# --- plot all three base systems on Dow PLUS actual data
savepdf("chp_ts_dax1_plus_act_data")
Mkt_act <- window(Mkt_ts, start=3020, end=3200)
plot.ts(Mkt_train,
    main="Simple Forecasting Methods",
    xlab="Days since 2000", ylab="DAX Closing Price",
    xlim=c(2, 3200))
lines(meanf(Mkt_train, h=350)$mean, lty=2)
lines(rwf(Mkt_train,drift=TRUE,h=350)$mean,lty=3)
legend("bottomright",lty=c(2,3),
    legend=c("Mean method","Drift method"))
lines(Mkt_act, lty=4)
dev.off () #savepdf end

# 1. Exp Smoothing - mean model
# a. build data set - window thru and add prediction
# a1 - calculates mean prediction
exp_mean <- function(Mkt_ts, Mkt, strt, mean_flag){
  Mktta <- Mkt
  cc <- Mktta[1,]
  cc$a <- 0
  ln <- nrow(Mkt)
  for(i in strt:ln){
    st <- i-30
    Mkt_slice <- window(Mkt_ts,start=st,end=i)
    if (mean_flag == TRUE) {
      modf <- meanf(Mkt_slice,h=1)
    } else {
      modf <- rwf(Mkt_slice,drift=TRUE,h=1)
    }
    a <- as.numeric(modf$mean)
    c1 <- Mktta[i,]
    ab <- cbind(c1,a)
cc <- rbind(cc, ab)
}
cc <- cc[-1,]
return(cc)

# a2 - generates data sets with predictions
run_exp_mean <- function(fil, nm){
  for(i in 1:length(fil)){
    Mkt <- read.csv(fil[i])
    Mkt_ts <- ts(Mkt$Close)
    res <- exp_mean(Mkt_ts, Mkt, 400, TRUE)
    browser()
    write.csv(res, paste('../Data/ES/', nm[i], '_es_mean.csv', sep=''), row.names = FALSE)
  }
}

# a3 - run thru data sets - takes while so need to run just once
# run_exp_mean(fil,nm)

# a4 - use data sets in system
fil_mean <- c("../Data/ES/Dax_es_mean.csv",
              ".../Data/ES/CAC_es_mean.csv",
              ".../Data/ES/FTSE_es_mean.csv",
              ".../Data/ES/Dow_es_mean.csv",
              ".../Data/ES/Nikkei_es_mean.csv",
              ".../Data/ES/AORD_es_mean.csv")

run_es_1 <- function(fil, SLoss, nm){
  df10 <- as.data.frame(matrix(seq(11),nrow=1,ncol=11))
  for(i in 1:length(fil)){
    Mkt <- read.csv(fil[i])
    a <- es_1(Mkt, SLoss, nm[i])
    df10 <- rbind(df10, a)
  }
  df.name <- names(a)
  names(df10) <- df.name
  df10 <- df10[-1,]
  return(df10)
}

res_mean <- run_es_1(fil_mean, 0, nm)
res_mean[misc_col] <- 'Mean Method'

# for summary results
total_res <- res_mean

dat <- res_mean[, std6]
dig <- 2
cap = c('Results from trading the predictions generated by a mean exponential
  smoothing system.',
          
          'Results from trading the predictions generated by a mean exponential
  smoothing system')
lab = 'tab:es_mean_sys'
filname = '../Tables/chp_ts_es_mean.tex'
inclrnam=FALSE
print_xt(dat,dig,cap,lab,al,filname,inclrnam)
# ---------------------------------------
# 2 - Drift model
run_exp_drift <- function(fil,nm){
  for (i in 1:length(fil)){
    Mkt <- read.csv(fil[i])
    Mkt_ts <- ts(Mkt$Close)
    res <- exp_mean(Mkt_ts,Mkt,400,FALSE)
    write.csv(res,paste('../Data/ES/',nm[i],'_es_drift.csv',sep=''),row.names=FALSE)
  }
}
# a3 - run thru data sets - takes while so need to run just once
#run_exp_drift(fil,nm)
res_drift <- run_es(fil_drift,0,nm)
res_drift[misc_col] <- 'Drift Method'
# Add to total results
total_res <- rbind(total_res, res_drift)
dat <- res_drift[, std6]
dig <- 2

# 3. Exp Smoothing - ets model
# 3a. gen data set
exp_sm <- function(Mkt_ts, Mkt, strt){
  Mkta <- Mkt
  cc <- Mkta[1,]
  cc$a <- 0
  cc$b <- 0
  ln <- nrow(Mkt)
  for(i in strt:ln){
    st <- i-30
    Mkt_slice <- window(Mkt_ts,start=st,end=i)
    modf <- ets(Mkt_slice)
fcastf <- forecast.ets(modf,h=1)

a <- as.numeric(fcastf$mean)
b <- modf$method
c1 <- Mkt[i,]
ab <- cbind(c1,b,a)
cc <- rbind(cc,ab)
}
cc <- cc[-1,]
return(cc)

# 3b - generates data sets with predictions
run_exp_sm <- function(fil,nm){
  for(i in 1:length(fil)){
    Mkt <- read.csv(fil[i])
    Mkt_ts <- ts(Mkt$Close)
    res <- exp_sm(Mkt_ts,Mkt,400)
    browser()
    write.csv(res,paste('..../Data/ES/','nm[i]','_es.csv',sep=''),row.names=FALSE)
  }
}

# loop thru data sets - takes while so need to run just once
#run_exp_sm(fil,nm)

# 3d Trade ES
fil_es <- c("../Data/ES/Dax_es.csv",
            ".../Data/ES/CAC_es.csv",
            ".../Data/ES/FTSE_es.csv",
            ".../Data/ES/Dow_es.csv",
            ".../Data/ES/Nikkei_es.csv",
            ".../Data/ES/AORD_es.csv")

# use prev function
res_es <- run_es_1(fil_es,0,nm)
res_es[misc_col] <- 'Exponential Smoothing'

# Add to total results
total_res <- rbind(total_res, res_es)
dat <- res_es[,std6]
dig <- 2

lab = 'tab:es_sys'
filename = '../Tables/chp_ts_es.tex'
inclrnam = FALSE
print_xt(dat,dig,cap,lab,al,filename,inclrnam)

# -----------------------------------------
# 2. ARIMA ----------------------
Mkt <- read.csv("../Data/F100_2000_d.csv")
Mkt_ts <- ts(Mkt$Close)
# Appendix A. R Code

```r
Mkt_train <- window(Mkt_ts, end=2999.99)
Mkt_test <- window(Mkt_ts, start=3000)

2.1. Plot the data. Identify any unusual observations.
savepdf("chp_ts_ftse_2000-13")
plot.ts(Mkt_train,
 main="FTSE 2000 - 2013",
 xlab="Days since 2000",
 ylab="FTSE Closing Price",
 xlim=c(100, 3000))
dev.off()

2.3. If the data are non-stationary: take first differences of the
data until the data are stationary.
savepdf("chp_ts_ftse_2000-13_diff")
plot(diff(Mkt_train),
 main="First Difference of FTSE 2000 - 2013",
 xlab="Days since 2000",
 ylab="FTSE Daily Price Movement",
 xlim=c(100, 3000))
dev.off()

2.4. Examine the ACF/PACF: Is an AR(p) or MA(q) model appropriate?
all 3 incl diff
savepdf("chp_ts_ftse_2000-13_diff_acf_tsd")
tsdisplay(diff(Mkt_train),main="FTSE 100 between 2000 and 2013",
 xlab="Days since 2000",
 ylab="FTSE Daily Price Movement")
dev.off()

a ACF
savepdf("chp_ts_ftse_2000-13_diff_acf")
plot(Acf(diff(Mkt_train)),
 main="ACF of FTSE 100 between 2000 and 2013",
 ylim=c(-0.08, 0.08))
dev.off()

a PACF
savepdf("chp_ts_ftse_2000-13_diff_pacf")
plot(Pacf(diff(Mkt_train)),
 main="PACF of FTSE 100 between 2000 and 2013",
 ylim=c(-0.08, 0.08))
dev.off()

2.5. Try your chosen model(s), and use the AICc to search for a better model.
mod_ar <- function(Mkt_ts, ord, nm){
 res <- t(as.data.frame(rep(0,4)))
 mod <- Arima(Mkt_ts, order=ord)
 res[1,1] <- nm
 res[1,2] <- round(mod$aic,1)
}
res[1,3] <- round(mod$aicc,1)
res[1,4] <- round(mod$bic,1)
return(res)

results <- t(as.data.frame(rep(0,4)))
colnames(results) <- c('Model ','AIC ','AICc ','BIC ')
r2 <- mod_ar(Mkt_train, c(3,1,1), 'ARIMA (3,1,1) ')
results <- rbind(results,r2)
r2 <- mod_ar(Mkt_train, c(3,1,2), 'ARIMA (3,1,2) ')
results <- rbind(results,r2)
r2 <- mod_ar(Mkt_train, c(3,1,3), 'ARIMA (3,1,3) ')
results <- rbind(results,r2)
r2 <- mod_ar(Mkt_train, c(2,1,1), 'ARIMA (2,1,1) ')
results <- rbind(results,r2)
r2 <- mod_ar(Mkt_train, c(2,1,2), 'ARIMA (2,1,2) ')
results <- rbind(results,r2)
r2 <- mod_ar(Mkt_train, c(2,1,3), 'ARIMA (2,1,3) ')
results <- rbind(results,r2)
results <- results [-1, ,]

produce latex table
dat <- results
dig <- c(0,0,2,2,2)
cap <- c("AIC, AICc and BIC results from alternative ARIMA models.",
"AIC, AICc and BIC results from alternative ARIMA models")
lab = 'tab: chp_ts: arima_res_r'
fname = '../Tables/chp_ts_arima_res_r.tex'
inclrnam=F
print_xt(dat,dig,cap/lab,fname,inclrnam)

--

2.6. Check the residuals from your chosen model by plotting the ACF of the
residuals, and doing a portmanteau test of the residuals.
If they do not look like white noise, try a modified model.
model_used_for_res <- Arima(Mkt_train, order=c(2,1,3))
model_name <- forecast(model_used_for_res)$method

a mean of residual
residual <- model_used_for_res$residuals
savepdf("chp_ts_ftse_2000-13_mean_residuals")
plot(residual, main = paste("Residuals from model of", model_name),
 ylab="", xlab="Day")
dev.off()

b. acf of residual
savepdf("chp_ts_ftse_2000-13_acf_residuals")
Acf(residuals(model_used_for_res),
 main= paste("ACF of Residuals of", model_name))
dev.off()

d. histogram of residuals - normal distribution
savepdf("chp_ts_ftse_2000-13_hist_residuals")
hist(residual, nclass="FD", main="Histogram of residuals")
dev.off()

e. portmanteau tests
bb <- Box.test(residuals(model_used_for_res), lag=24, fitdf=4, type="Ljung")
results_bc <- as.data.frame(rep(0,3))
results_bc[1,1] <- round(bb$p.value,4)
results_bc[2,1] <- round(bb$parameter)
results_bc[3,1] <- round(bb$statistic)
colnames(results_bc) <- c(forecast(model_used_for_res)$method)
rownames(results_bc) <- c("p-value","x-squared","df")
results_bc_t <- t(results_bc)
dat <- results_bc_t
dig <- c(0,4,0,0)
cap <- c("Box Ljung test of FTSE 100 ARIMA model residuals.",
 "Box Ljung test of FTSE 100 ARIMA model residuals")
lab = 'tab : chp_ts: arima_res_rbox_l'
filename = '../Tables/chp_ts_arima_res_r_box_l.tex'
inclrnam=TRUE
print_xt(dat,dig,cap,lab,al,filname,inclrnam)

2.7 Once the residuals look like white noise, calculate forecasts.
model_used_for_res <- Arima(Mkt_ts, order=c(2,1,3))
model_name <- forecast(model_used_for_res)$method

arima_man_fcast <- forecast.Arima(model_used_for_res,Mkt_test)
fitted.data <- as.data.frame(arima_man_fcast$fitted);
Mkt_test_df <- cbind(Mkt,fitted.data)
colnames(Mkt_test_df) <- c('Date','Open','High','Low','Close','Forecast')

plot the results
dat <- tail(Mkt_test_df)
dig <- 0
cap <- c("One-step ahead forecast for FTSE 100 generated from ARIMA(2,1,3) model.
",
 "Forecast for FTSE 100 generated from the ARIMA model")
lab = 'tab:chp_ts:ftse_100_fcast'
filename = '../Tables/chp_ts_ftse_100_fcast.tex'
inclrnam=F
print_xt(dat,dig,cap,lab,al,filname,inclrnam)

2.8 auto.arima
arim_mod_fnc <- function(fil,nm){
 dfres <- dfres <- t(c('a','b'))
 for(i in 1:length(fil)){
 Mkt <- read.csv(fil[i])
 Mkt_train <- ts(Mkt$Close)
 arima_train_mod <- auto.arima(Mkt_train)
 dfres <- rbind(dfres,c(nm[i], forecast(arima_train_mod)$method))
 }
 return(dfres)
}
fg <- arim_mod_fnc(fil,nm)
f <- fg[-1,]
colnames(fg) <- c('Market','ARIMA Model')

plot the results
dat <- fg
dig <- 0
cap <- c("ARIMA models chosen to forecast future values in the national indice
data sets.",
 "ARIMA models chosen for the indice data sets")
lab = 'tab:chp_ts_arima_models'
filename = '../Tables/chp_ts_arima_models.tex'
inclrnam=F
print_xt(dat,dig,cap,lab,al,filename,inclrnam)

plot the results for Chp 6 ...
dat <- fg
dig <- 0
cap <- c("ARIMA models chosen to forecast future values in the national indice
data sets.",
 "ARIMA models chosen for the indice data sets")
lab = 'tab:chp_ts_arima_models_chp6'
filename = '../Tables/chp_ts_arima_models_chp6.tex'
inclrnam=F
print_xt(dat,dig,cap,lab,al,filename,inclrnam)

3. Trading System
using the models generated from the auto.arima function
df10 <- as.data.frame(matrix(seq(11),nrow=1,ncol=11))

ts_1_fnc <- function(fil,nm,ts1){
 for(i in 1:length(fil)){
 Mkt <- read.csv(fil[i])
 Mkt_ts <- ts(Mkt$Close)
 Mkt_train <- window(Mkt_ts, end=2999.99)
 Mkt_test <- window(Mkt_ts, start=3000)
 arima_train_mod <- auto.arima(Mkt_train)
 arima_fcast <- forecast.Arima(arima_train_mod,Mkt_test)
 arima_test_mod <- Arima(Mkt_test, model = arima_train_mod) # 1 step fcast on
 future data ...
 arima_test_fcast <- forecast(arima_test_mod)
 fitted.data <- as.data.frame(arima_test_fcast$fitted);
 ln <- nrow(Mkt)
 lw <- nrow(fitted.data)
 Mkt_test_df <- Mkt[[ln-lw+1]:ln,]
 Mkt_test_df <- cbind(Mkt_test_df,fitted.data)
 colnames(Mkt_test_df) <- c("Date","Open","High","Low","Close","p")
 if(tsl == TRUE){
 a <- ts_1(Mkt_test_df, 0, nm[i]) # System 1
 } else {
 a <- ts_2(Mkt_test_df, 0, nm[i]) # System 2
 }
 df10 <- rbind(df10, a)
 }
}
df.name <- names(a)
names(df10) <- df.name
df10 <- df10[-c(1),]
return(df10)

run the fnc ts_1 and apply Sys 1 to the auto.arima data
res1 <- ts_1_fnc(fil,nm,TRUE)
res1[misc_col] <- 'ARIMA - System 1'
Add to total results
total_res <- rbind(total_res, res1)

produce latex table from ts_1
dat <- res1[,c(1,3,4,5,7,8,10)]
dig <- 0
cap <- c("Results from trading System 1 using the forecasts generated by the ARIMA models. ",
 "Results from trading System 1 using the forecasts generated by the ARIMA models")
lab = 'tab:chp_ts:arima1'
filename = '../Tables/chp_ts_arima1.tex'
inclrnam=FALSE
print_xt(dat,dig,cap,lab,al,filename,inclrnam)

compare to Naive reverse
diff_df1 <- sub_df_av_pl(res1,NaiveRev)
produce latex table from ts_1
#dat <- diff[,c(1,7,10)]
dat <- diff_df1
dig <- 0
cap <- c("PL from Naive Reversing system subtracted from results generated by a trading system based on ARIMA forecasts. ",
 "ARIMA system results minus Naive Reversing results")
lab = 'tab:chp_ts:arima1_diff'
filename = '../Tables/chp_ts_arima1_diff.tex'
inclrnam=FALSE
print_xt(dat,dig,cap,lab,al,filename,inclrnam)

--
run the fnc ts_2
apply system 2 to auto.arima data
res2 <- ts_1_fnc(fil,nm,FALSE) # F = ts_2
res2[misc_col] <- 'ARIMA - System 2'
Add to total results
total_res <- rbind(total_res,res2)
produce latex table from ts_2
dat <- res2[,c(1,3,4,5,7,8,10)]
dig <- 0
cap <- c("Results from trading System 2 using the forecasts generated by the ARIMA models. ",
 "Results from trading System 2 using the forecasts generated by the ARIMA models")
lab = 'tab:chp Ts:arima2'
filename = '../Tables/chp_ts_arima2.tex'
inclrnam=FALSE
print_xt(dat,dig,cap,lab,al,filename,inclrnam)

-------- RM Generated Files ---
-------- HYBRID ARIMA SYSTEMS ---------------------------------------

--------- HYBRID ARIMA SYSTEMS ---------------------------------------

ts_1_2_fnc_ar <- function(fil,nm,ts1){
 for(i in 1:length(fil)){
 Mkt <- read.csv(fil[i],stringsAsFactors=F)
 Mkt_p <- Mkt[,c(1,2,3,4,5,20)]
 if(ts1 == TRUE){
 a <- ts_1(Mkt_p, 0, nm[i])
 } else {
 a <- ts_2(Mkt_p, 0, nm[i])
 }
 df10 <- rbind(df10, a)
 df.name <- names(a)
 names(df10) <- df.name
 df10 <- df10[-c(1),]
 return(df10)
 }

 df10 <- as.data.frame(matrix(seq(11),nrow=1 , ncol=11))

 # a. System 1
 res3 <- ts_1_2_fnc_ar(fil,nm,TRUE)
 res3[misc_col] <- 'ARIMA/ANN Closing Price System 1'
 total_res <- rbind(total_res, res3)

 # produce latex table from ts_1
 dat <- res3[,c(1,3,4,5,7,8,10)]
 dig <- 0
 cap <- c("Results from passing closing price predictions from hybrid ARIMA/ANN model to System 1.",
 "Results from passing closing price predictions from hybrid ARIMA/ANN model to System 1")
 lab = 'tab:chp_ts:arima_ann_sys1'
 filename = '../Tables/chp_ts_arima_ann_sys1.tex'
inclrnam=FALSE
print_xt(dat,dig,cap,lab,al,filname,inclrnam)

comparing to Naive Prev
res_diff3 <- sub_df_av_pl(res3,NaiveRev)

dat <- res_diff3
dig <- 0
cap <- c("PL from Naive Reversing system subtracted from results generated by
trading System 1 based on ARIMA/ANN closing price forecasts.",
"ARIMA/ANN closing price system results minus Naive Reversing results")
lab = "tab:chp_ts:arima_ann_sys1_diff"
filename = '../Tables/chp_ts_arima_ann_sys1_diff.tex'
inclrnam=FALSE
print_xt(dat,dig,cap,lab,al,filname,inclrnam)

a. System 2
res4 <- ts_1_2_fnc_ar(fil,nm,TRUE)
res4[,misc_col] <- 'ARIMA/k-NN Closing Price System 2'

Add to total results
total_res <- rbind(total_res, res4)

dat <- res4[,c(1,3,4,5,7,8,10)]
dig <- 0
cap <- c("Results from passing closing price predictions from hybrid ARIMA/ANN
model to System 2. ",
"Results from passing closing price predictions from hybrid ARIMA/ANN
model to System 2")
lab = "tab:chp_ts:arima_ann_sys2"
filename = '../Tables/chp_ts_arima_ann_sys2.tex'
inclrnam=FALSE
print_xt(dat,dig,cap,lab,al,filname,inclrnam)

2. ------ Arima knn Predicting Closing Price -------------------------
fil <- c("../Data/ARIMA2/Predict_Close/ar334_knn_Dax.csv",
"../Data/ARIMA2/Predict_Close/ar334_knn_CAC.csv",
"../Data/ARIMA2/Predict_Close/ar334_knn_F100.csv",
"../Data/ARIMA2/Predict_Close/ar334_knn_Dow.csv",
"../Data/ARIMA2/Predict_Close/ar334_knn_Nik.csv",
"../Data/ARIMA2/Predict_Close/ar334_knn_Oz.csv")

df10 <- as.data.frame(matrix(seq(11),nrow=1,ncol=11))

a. System 1
res5 <- ts_1_2_fnc_ar(fil,nm,TRUE)
res5[,misc_col] <- 'ARIMA/k-NN Closing Price System 1'

Add to total results
total_res <- rbind(total_res, res5)

dat <- res5[,c(1,3,4,5,7,8,10)]
Appendix A. R Code

```r
642 dig <- 0
643 cap <- c("Results from passing closing price predictions from hybrid ARIMA/k-NN model to System 1.",
            "Results from passing closing price predictions from hybrid ARIMA/k-NN model to System 1")
644 lab = 'tab:chp_ts:pred_close_arima_knn_sys1'
645 filename = '../Tables/chp_ts_pred_close_arima_knn_sys1.tex'
646 inclrnam=FALSE
647 print_xt(dat,dig,cap,lab,al,filename,inclrnam)
648
649 # comp aring to Naive Prev
650 #res_diff <- sub_df_av_pl(res,NaiveRev)
651 res_diff5 <- sub_df(res5,NaiveRev)
652
653 # produce latex table from ts_1
654 dat <- res_diff5[,c(1,5,7,8,10)]
655 dig <- 0
656 cap <- c("PL from Naive Reversing system subtracted from results generated by trading System 1 based on ARIMA/k-NN closing price forecasts.",
            "ARIMA/k-NN closing price system results minus Naive Reversing results")
657 lab = 'tab:chp_ts:pred_close_arima_knn_sys1_diff'
658 filename = '../Tables/chp_ts_pred_close_arima_knn_sys1_diff.tex'
659 inclrnam=FALSE
660 print_xt(dat,dig,cap,lab,al,filename,inclrnam)
661
662 # a. System 2
663 res6 <- ts_1_2_fnc_ar(fil,nm,FALSE)
664 res6[misc_col] <- 'ARIMA/k-NN Closing Price System 2'
665
666 # Add to total results
667 total_res <- rbind(total_res, res6)
668
669 # produce latex table from ts_1
670 dat <- res6[,c(1,3,4,5,7,8,10)]
671 dig <- 0
672 cap <- c("Results from passing closing price predictions from hybrid ARIMA/k-NN model to System 2.",
            "Results from passing closing price predictions from hybrid ARIMA/k-NN model to System 2")
673 lab = 'tab:chp_ts:pred_close_arima_knn_sys2'
674 filename = '../Tables/chp_ts_pred_close_arima_knn_sys2.tex'
675 inclrnam=FALSE
676 print_xt(dat,dig,cap,lab,al,filename,inclrnam)
677
678 # ------ Arima Ann Predicting Up/Dn - Categorical -----------------
679 # a. Categorical
680 fil <- c("../Data/ARIMA2/PredUpDn_CAT/ar_334_UD_ann_Dax2.csv",
          
          "../Data/ARIMA2/PredUpDn_CAT/ar_334_UD_ann_CAC.csv",
          "../Data/ARIMA2/PredUpDn_CAT/ar_334_UD_ann_F100.csv",
          "../Data/ARIMA2/PredUpDn_CAT/ar_334_UD_ann_Dow.csv",
          "../Data/ARIMA2/PredUpDn_CAT/ar_334_UD_ann_N225.csv",
          "../Data/ARIMA2/PredUpDn_CAT/ar_334_UD_ann_Oz.csv")
681
682 # 1. ARMA / ANN (Predicting Up/Dn - Categorical)
683 fil <- c("../Data/ARIMA2/PredUpDn_CAT/ar_334_UD_ann_Dax2.csv",
          "../Data/ARIMA2/PredUpDn_CAT/ar_334_UD_ann_CAC.csv",
          "../Data/ARIMA2/PredUpDn_CAT/ar_334_UD_ann_F100.csv",
          "../Data/ARIMA2/PredUpDn_CAT/ar_334_UD_ann_Dow.csv",
          "../Data/ARIMA2/PredUpDn_CAT/ar_334_UD_ann_N225.csv",
          "../Data/ARIMA2/PredUpDn_CAT/ar_334_UD_ann_Oz.csv")
```
```
#nm <- c("Dax","CAC","FTSE","Dow","Nikkei","AORD")
df10 <- as.data.frame(matrix(seq(11),nrow=1,ncol=11))
res7 <- ts_fnc_ar(fil,0,nm)
res7["misc_col"] <- 'ARIMA/ANN Up/Down'

# Add to total results
total_res <- rbind(total_res, res7)

# produce latex table from ts_1
dat <- res7[,c(1,3,4,5,7,8,10)]
dig <- 0
cap <- c("Results from a trading system using the forecast of categorical label \ "U/D\" from hybrid ARIMA/ANN model.",
        "Results from a trading system using the forecast of categorical label \ "U/D\" from hybrid ARIMA/ANN model")
lab = 'tab:chp_ts:pUD_CAT_arima_ann_sys'
filname = '../Tables/chp_ts_predUpDn_CAT_arima_ann_sys.tex'
inclrnam = FALSE
print_xt(dat,dig,cap,lab,al,filname,inclrnam)

# 2. ARMA / knn (Predicting Up/Dn - Categorical)
fil <- c("../Data/ARIMA2/PredUpDn_CAT/ar_334_UD_knn_Dax.csv",
        "../Data/ARIMA2/PredUpDn_CAT/ar_334_UD_knn_CAC.csv",
        "../Data/ARIMA2/PredUpDn_CAT/ar_334_UD_knn_FTSE.csv",
        "../Data/ARIMA2/PredUpDn_CAT/ar_334_UD_knn_Dow.csv",
        "../Data/ARIMA2/PredUpDn_CAT/ar_334_UD_knn_Nikkei.csv",
        "../Data/ARIMA2/PredUpDn_CAT/ar_334_UD_knn_Oz.csv")

#nm <- c("Dax","CAC","FTSE","Dow","Nikkei","AORD")
df10 <- as.data.frame(matrix(seq(11),nrow=1,ncol=11))
res8 <- ts_fnc_ar(fil,-100,nm)
res8["misc_col"] <- 'ARIMA/k-NN Up/Down'

# Add to total results
total_res <- rbind(total_res, res8)

# produce latex table from ts_1
dat <- res8[,c(1,3,4,5,7,8,10)]
dig <- 0
cap <- c("Results from a trading system using the forecast of categorical label \ "U/D\" from hybrid ARIMA/k-NN model.",
        "Results from a trading system using the forecast of categorical label \ "U/D\" from hybrid ARIMA/k-NN model")
lab = 'tab:chp_ts:pUD_CAT_arima_knn_sys'
filname = '../Tables/chp_ts_predUpDn_CAT_arima_knn_sys.tex'
inclrnam = FALSE
print_xt(dat,dig,cap,lab,al,filname,inclrnam)

# 2. ARMA / knn (Predicting Up/Dn - Categorical) - SLoss
res8a <- ts_fnc_ar(fil,-100,nm)
res8a["misc_col"] <- 'ARIMA/ANN Up/Down Stop Loss'
```
Add to total results
```
total_res <- rbind(total_res, res8a)
```

produce latex table from ts_1
```
dat <- res8a[,c(1,3,4,5,7,8,10)]
dig <- 0
cap <- c("Results from a trading system with a stop loss using the forecast of categorical label \"U/D\" from hybrid ARIMA/k-NN model.\",
           "Results from a trading system with a stop loss using the forecast of categorical label \"U/D\" from hybrid ARIMA/k-NN model")
lab = 'tab:chp_ts:predUpDn_CAT_arima_knn_sys_SL'
filename = '../Tables/chp_ts_predUpDn_CAT_arima_knn_sys_SL.tex'
include = FALSE
print_xt(dat, dig, cap, lab, al, filename, include)
```

comparing to Naive Prev
```
res_diff8 <- sub_df(res8, NaiveRev)
```

produce latex table from ts_1
```
dat <- res_diff8[,c(1,5,7,8,10)]
dig <- 0
cap <- c("PL from Naive Reversing system subtracted from results generated by a trading system based on ARIMA/k-NN forecasts.\",
           "ARIMA/k-NN U/D system results minus Naive Reversing results")
lab = 'tab:chp_ts:predUpDn_CAT_arima_knn_sys_diff'
filename = '../Tables/chp_ts_predUpDn_CAT_arima_knn_sys_diff.tex'
include = FALSE
print_xt(dat, dig, cap, lab, al, filename, include)
```

4. ARMA / SVM (Predicting Up/Dn - Categorical)
```
fil <- c("../Data/ARIMA2/PredUpDn_CAT/ar_334_UD_svm_Dax.csv",
         "../Data/ARIMA2/PredUpDn_CAT/ar_334_UD_svm_CAC.csv",
         "../Data/ARIMA2/PredUpDn_CAT/ar_334_UD_svm_FTSE.csv",
         "../Data/ARIMA2/PredUpDn_CAT/ar_334_UD_svm_Dow.csv",
         "../Data/ARIMA2/PredUpDn_CAT/ar_334_UD_svm_N225.csv",
         "../Data/ARIMA2/PredUpDn_CAT/ar_334_UD_svm_Oz.csv")
```

#nm <- c("Dax","CAC","FTSE","Dow","Nikkei","AORD")
```
df10 <- as.data.frame(matrix(seq(11),nrow=1,ncol=11))
```
res9 <- ts_fcn_ar(fil, 0, nm)
res9[misc_col] <- 'ARIMA/SVM Up/Down'
```

# Add to total results
```
total_res <- rbind(total_res, res9)
```

# produce latex table from ts_1
```
dat <- res9[,c(1,3,4,5,7,8,10)]
dig <- 0
cap <- c("Results from a trading system using the forecast of categorical label \"U/D\" from hybrid ARIMA/SVM model.\",
 "Results from a trading system using the forecast of categorical label \"U/D\" from hybrid ARIMA/SVM model")
lab = 'tab:chp_ts:predUpDn_CAT_arima_svm_sys'
```
Appendix A. R Code

```r
filename = '../Tables/chp_ts_predUpDn_CAT_arima_svm_sys.tex'
inclrnam = FALSE
print_xt(dat, dig, cap, lab, al, filename, inclrnam)

comparing to Naive Prev
res_diff9 <- sub_df(res9, NaiveRev)

produce latex table from ts_1
dat <- res_diff9[, c(1, 5, 7, 8, 10)]
dig <- 0
cap <- c("PL from Naive Reversing system subtracted from results generated by a trading system based on ARIMA/SVM U/D forecasts.",
"ARIMA/SVM U/D system results minus Naive Reversing results")
lab = 'tab:chp_ts:predUpDn_CAT_arima_svm_sys_diff'
filename = '../Tables/chp_ts_predUpDn_CAT_arima_svm_sys_diff.tex'
inclrnam = FALSE
print_xt(dat, dig, cap, lab, al, filename, inclrnam)

Chp6
lab = 'tab:chp_ts:predUpDn_CAT_arima_svm_sys_chp6'
filename = '../Tables/chp_ts_predUpDn_CAT_arima_svm_sys_chp6.tex'
inclrnam = FALSE
print_xt(dat, dig, cap, lab, al, filename, inclrnam)

-- Generate Summary tables for Chp6
1. Dax
colnames(total_res)[11] <- 'Methodology'
Dx <- total_res[total_res$Mkt == 'DAX',]
Dx2 <- Dx[, c(11, 3, 4, 7, 10)]

dat <- Dx2
dig <- 2
cap <- c('Chapter 5 DAX Results',
'Chapter 5 DAX Results')
lab = 'tab:chp6:dax2_summary'
filename = '../Tables/chp6_dax_summary.tex'
inclrnam = FALSE
print_xt(dat, dig, cap, lab, al, filename, inclrnam)

2. CAC
Cc <- total_res[total_res$Mkt == 'CAC',]
Cc2 <- Cc[, c(11, 3, 4, 7, 10)]

dat <- Cc2
dig <- 2
cap <- c('Chapter 5 CAC Results',
'Chapter 5 CAC Results')
lab = 'tab:chp6: cac2_summary'
filename = '../Tables/chp6_cac_summary.tex'
inclrnam = FALSE
print_xt(dat, dig, cap, lab, al, filename, inclrnam)

3. FTSE
```
Ft <- total_res[total_res$Mkt == 'FTSE',]
Ft2 <- Ft[c(11,3,4,7,10)]

dat <- Ft2

dig <- 2
cap = c('
Chapter 5 FTSE Results
Chapter 5 FTSE Results')
lab = 'tab:chp6:ftse2_summary'
filename = '/../Tables/chp_6_ftse2_summary.tex'
incluirnam=FALSE
print_xt(dat,dig,cap,lab,filname,incluirnam)

Dw <- total_res[total_res$Mkt == 'Dow',]
Dw2 <- Dw[c(11,3,4,7,10)]

dat <- Dw2
dig <- 2
cap = c('Chapter 5 Dow Results
Chapter 5 Dow Results')
lab = 'tab:chp6:dow2_summary'
filename = '/../Tables/chp_6_dow2_summary.tex'
incluirnam=FALSE
print_xt(dat,dig,cap,lab,filname,incluirnam)

Nk <- total_res[total_res$Mkt == 'Nikkei',]
Nk2 <- Nk[c(11,3,4,7,10)]

dat <- Nk2
dig <- 2
cap = c('Chapter 5 Nikkei Results
Chapter 5 Nikkei Results')
lab = 'tab:chp6:nik2_summary'
filename = '/../Tables/chp_6_nik2_summary.tex'
incluirnam=FALSE
print_xt(dat,dig,cap,lab,filname,incluirnam)

Oz <- total_res[total_res$Mkt == 'AORD',]
Oz2 <- Oz[c(11,3,4,7,10)]

dat <- Oz2
dig <- 2
cap = c('Chapter 5 AORD Results
Chapter 5 AORD Results')
lab = 'tab:chp6:aord2_summary'
filename = '/../Tables/chp_6_aord2_summary.tex'
incluirnam=FALSE
print_xt(dat,dig,cap,lab,filname,incluirnam)
A.2.1 Exponential Smoothing

```r
es_1 <- function(Mkt, SLoss, MktName) {
 # Trading system using predictions from exponential smoothing models.
 #
 # Mkt: market data
 # SLoss: stop loss
 # MktName: market's name for print out
 # Returns:
 # results vector.
 results <- createResultsVector(MktName, SLoss)

 # Trade Long
 Mkt$pred_d <- ifelse(Mkt$a > Mkt$Close, 'U', 'D')
 Mkt$pu <- c(NA, Mkt$pred_d[-length(Mkt$pred_d)])

 Mkt$Long <- ifelse(Mkt$pu == 'U', Mkt$Close - Mkt$Open, NA)
 results["LongPL"] <- round(sum(Mkt$Long, na.rm=TRUE))

 # Adj for SLoss
 if (SLoss < 0) {
 Mkt$Long <- ifelse(Mkt$p > Mkt$p_c,
 ifelse((Mkt$Low - Mkt$Open) < SLoss, SLoss, Mkt$Long),
 Mkt$Long)
 results["LongPL"] <- round(sum(Mkt$Long, na.rm=TRUE))
 }

 # Trade Short
 Mkt$Short <- ifelse(Mkt$pu == 'D', Mkt$Open - Mkt$Close, NA)
 results["ShortPL"] <- round(sum(Mkt$Short, na.rm=TRUE))

 # Adj for SLoss
 if (SLoss < 0) {
 Mkt$Short <- ifelse(Mkt$p < Mkt$p_c,
 ifelse((Mkt$Open - Mkt$High) < SLoss, SLoss, Mkt$Short),
 Mkt$Short)
 results["ShortPL"] <- round(sum(Mkt$Short, na.rm=TRUE))
 }

 Stats <- calcStats2(Mkt$Long)
 results[5:7] <- Stats

 Stats <- calcStats2(Mkt$Short)
 results[8:10] <- Stats

 return(results)
}
```

RCode/es_1.R
A.2.2 System 1 Trading Algorithm

```r
ts_1 <- function(Mkt, SLoss, MktName) {
 # Trading system using predictions from ARIMA models. Uses relative
 # value of the forecast with the previous close
 #
 # Mkt: market data
 # SLoss: stop loss
 # MktName: market's name for print out
 # Returns:
 # results vector.

 results <- createResultsVector(MktName, SLoss)
 Mkt$p_c <- c(NA, Mkt$Close[-length(Mkt$Close)]) # prev close
 Mkt$p_p <- c(NA, Mkt$p[-length(Mkt$p)]) # prev pred
 # Trade Long
 Mkt$Long <- ifelse(Mkt$p_p > Mktp_c, MktClose - Mkt$Open, NA)
 results["LongPL"] <- round(sum(Mkt$Long, na.rm=TRUE))
 # Adj for SLoss
 if (SLoss < 0) {
 Mkt$Long <- ifelse(Mkt$p_p > Mkt$p_c,
 ifelse((Mkt$Low - Mkt$Open) < SLoss, SLoss, Mkt$Long),
 Mkt$Long)
 results["LongPL"] <- round(sum(Mkt$Long, na.rm=TRUE))
 }
 # Trade Short
 Mkt$Short <- ifelse(Mkt$p_p < Mktp_c, MktOpen - Mkt$Close, NA)
 results["ShortPL"] <- round(sum(Mkt$Short, na.rm=TRUE))
 # Adj for SLoss
 if (SLoss < 0) {
 Mkt$Short <- ifelse(Mkt$p_p < Mkt$p_c,
 ifelse((Mkt$Open - Mkt$High) < SLoss, SLoss, Mkt$Short),
 Mkt$Short)
 results["ShortPL"] <- round(sum(Mkt$Short, na.rm=TRUE))
 }
 Stats <- calcStats2(Mkt$Long)
 results[6:7] <- Stats
 Stats <- calcStats2(Mkt$Short)
 results[8:10] <- Stats
 return(results)
}
```

A.2.3 System 2 Trading Algorithm

```r
ts_2 <- function(Mkt, SLoss, MktName){
```
# Trading system using predictions from ARIMA models. Uses
# relative value of the forecast and the previous forecast
#
# Mkt: market data
# S Loss: stop loss
# MktName: market’s name for print out
# Returns:
# results vector.

results <- createResultsVector(MktName, SLoss)

Mkt$p_p <- c(NA, Mkt$p[-length(Mkt$p)])  # prev prediction
Mkt$p_p2 <- c(NA, Mkt$p_p[-length(Mkt$p_p)])  # prev prediction

# Trade Long
Mkt$Long <- ifelse(Mkt$p_p > Mkt$p_p2, Mkt$Close - Mkt$Open, NA)
results['LongPL'] <- round(sum(Mkt$Long, na.rm=TRUE))

if (SLoss < 0) {
  Mkt$Long <- ifelse(Mkt$p_p > Mkt$p_p2,
                      ifelse((Mkt$Low-Mkt$Open) < SLoss, SLoss, Mkt$Long),
                      Mkt$Long)
  results['LongPL'] <- round(sum(Mkt$Long, na.rm=TRUE))
}

# Trade Short
Mkt$Short <- ifelse(Mkt$p_p < Mkt$p_p2, Mkt$Open - Mkt$Close, NA)
results['ShortPL'] <- round(sum(Mkt$Short, na.rm=TRUE))

if (SLoss < 0) {
  Mkt$Short <- ifelse(Mkt$p_p < Mkt$p_p2,
                       ifelse((Mkt$Open-Mkt$High) < SLoss, SLoss, Mkt$Short),
                       Mkt$Short)
  results['ShortPL'] <- round(sum(Mkt$Short, na.rm=TRUE))
}

Stats <- calcStats2(Mkt$Long)
results[5:7] <- Stats

Stats <- calcStats2(Mkt$Short)
results[8:10] <- Stats
return(results)

---

### A.2.4 Trading System for Categorical Label

```r
ts_4 <- function(Mkt, SLoss, MktName){
 # trading system based on prediction from Hybrid/ARIMA models working with
categorical
 # label with valued U or D
```

RCode/ts_2.R
Appendix A. R Code

```r
Mkt: market data
SLoss: stop loss
MktName: market's name for print out
#
Returns:
results vector.
results <- createResultsVector(MktName, SLoss)
Mkt$p_p <- c(NA, Mkt$pred[-length(Mkt$pred)]) # prev pred

Trade Long
Mkt$Long <- ifelse(Mkt$p_p == "U", Mkt$Close - Mkt$Open, NA)
results["LongPL"] <- round(sum(Mkt$Long, na.rm=TRUE))
#Adj for SLoss
if (SLoss < 0) {
 Mkt$Long <- ifelse(Mkt$p_p == "U",
 ifelse((Mkt$Low-Mkt$Open) < SLoss, SLoss, Mkt$Long),
 Mkt$Long)
 results["LongPL"] <- round(sum(Mkt$Long, na.rm=TRUE))
}

Trade Short
Mkt$Short <- ifelse(Mkt$p_p == "D", Mkt$Open - Mkt$Close, NA)
results["ShortPL"] <- round(sum(Mkt$Short, na.rm=TRUE))
#Adj for SLoss
if (SLoss < 0) {
 Mkt$Short <- ifelse(Mkt$p_p == "D",
 ifelse((Mkt$Open-Mkt$High) < SLoss, SLoss, Mkt$Short),
 Mkt$Short)
 results["ShortPL"] <- round(sum(Mkt$Short, na.rm=TRUE))
}
Stats <- calcStats2(Mkt$Long)
results[5:7] <- Stats
Stats <- calcStats2(Mkt$Short)
results[8:10] <- Stats
return(results)
```

A.3 Utility Code

```r
nm <- c("DAX", "CAC", "FTSE", "Dow", "Nikkei", "AORD")
createResultsVector <- function(MktName, SLossValue){
 # Function to create results vector
 # Args:
```
# SLoss: stop loss value
# MktName: market's name for print out
#
# Returns:
# results vector.

results <- rep(0,11)

nam <- c(" Mkt ",  # 1. Name of Mkt
         "S Loss ",  # 1. Name of Mkt
         "LongPL",   # 1. Name of Mkt
         "ShortPL",   # 1. Name of Mkt
         "L Win %",   # 1. Name of Mkt
         "L Trades",  # 1. Name of Mkt
         "Av L PL",   # 1. Name of Mkt
         "S Win %",   # 1. Name of Mkt
         "S Trades",  # 1. Name of Mkt
         "Av S PL",   # 1. Name of Mkt
         "SMA")      # 1. Name of Mkt

names(results) <- nam
results[" Mkt "] <- MktName
results["S Loss "] <- SLossValue
return(results)
}

calcStats <- function(x){
  # Function to calculate trade stats
  #
  # Args:
  # x - data set
  #
  # Returns:
  # results vector.

  results <- 1:3
  v <- na.omit(x)

  # Win %
  wins <- length(v[v>0])
  losses <- length(v[v<0])
  results[1] <- round(wins/(wins+losses)*100)

  # Num Trades
  results[2] <- length(v)

  # Av Long PL
  results[3] <- round(sum(v) / length(v))

  return(results)
}

calcStats2 <- function(x){
  # Function to calculate trade stats
  #
  # Args:
  # x - data set
```r
Returns:
results vector.

results <- 1:3

Win %
wins <- sum(v > 0, na.rm=T)
losses <- sum(v < 0, na.rm=T)
results[1] <- round(wins/(wins+losses)*100)

Num Trades
results[2] <- wins+losses

Av Long PL
results[3] <- round(sum(v, na.rm=T)/(wins+losses))

return(results)
```

```r
calcWinPer <- function(x){
wins <- length(x[x > 0])
losses <- length(x[x < 0])
return(wins/(wins+losses)*100)
}

calcAverageWin <- function(x){
wins <- length(x)
winpl <- sum(x, na.rm=T)
return(winpl/wins)
}

calcNumTrades <- function(x){
return(length(na.omit(x)))
}

savepdf <- function(file, width=16, height=10){
 fname <- paste("../Figures/", file, ".pdf", sep="")
pdf(fname, width=width/2.54, height=height/2.54,
 pointsize=10)
 par(mgp=c(2.2, 0.45, 0), tcl=-0.4, mar=c(3.3, 3.6, 1.1, 1.1))
}

print_xt <- function(dat, dig, cap, lab, al, filename, inclrnan){
x <- xtable(dat,
 digits = dig,
 caption = cap,
 label = lab)
 al <- c("l", "l")
```
Appendix A. R Code

```r
al <- c(al, rep('c', ncol(dat)-1))
align(xt) <- al
print(xt,
 file=filename,
 include.rownames=inclrnam,
 caption.placement = "top",
 add.to.row=list(pos=list(-1,0, nrow(xt)),
 command=c('\toprule ', '\\midrule ', '\\bottomrule ')))
}

subtract 2 data frames
df2 from df1
sub_df <- function(df1, df2){
 nc <- ncol(df1)
 ln <- nrow(df1)
 dfres <- df1
 for(i in 1:ln){
 for(j in 2:nc){
 dfres[i,j] <- as.numeric(df1[i,j]) - as.numeric(df2[i,j])
 }
 }
 return(dfres)
}

subtract 2 data frames - rtn fewer cols
df2 from df1
sub_df_av_pl <- function(df1, df2){
 nc <- ncol(df1)
 ln <- nrow(df1)
 dfres <- df1
 for(i in 1:ln){
 for(j in 2:nc){
 dfres[i,j] <- as.numeric(df1[i,j]) - as.numeric(df2[i,j])
 }
 }
 dfres <- dfres[,c(1,7,10)]
colnames(dfres) <- c('Mkt','Diff in Mean Long PL','Diff in Mean Short PL')
 return(dfres)
}

------------ Follow Previous ------------
run_NaiveReversePrev <- function(fil,SLoss, nm){
 df10 <- as.data.frame(matrix(seq(11),nrow=1,ncol=11))
 for(i in 1:length(fil)){
```

Appendix A. R Code

```r
Dax <- read.csv(fil[i], stringsAsFactors=F)
a <- NaiveReversePrev(Dax, SLoss, nm[i])
df10 <- rbind(df10, a)
}
df.name <- names(a)
names(df10) <- df.name
df10 <- df10[-1,]
return(df10)
}

------------ CHAPTER 5 ---
------ Arima Ann Predicting Up/Dn - Categorical -----------------
a. Categorical
ts_4_fnc_ar <- function(fil, SLoss, nm){
 for(i in 1:length(fil)){
 Mkt <- read.csv(fil[i], stringsAsFactors=F)
 Mkt_p <- Mkt[,c(1,2,3,4,5)]
 Mkt_p$pred <- Mkt$pred
colnames(Mkt_p) <- c("Date","Open","High","Low","Close","pred")
a <- ts_4(Mkt_p, SLoss, nm[i])
df10 <- rbind(df10, a)
 }
df.name <- names(a)
names(df10) <- df.name
df10 <- df10[-c(1,)]
return(df10)
}
```

RCODE/Utils.R
Appendix B

Technical Indicators

B.1 Moving Average Convergence Divergence (MACD)

MACD is a widely used technical indicator which attempts to detect the early stage of a market trend (Appel and Dobson, 2007). It is calculated by subtracting a long exponential moving average (EMA) from a shorter one. The EMA is calculated as follows:

\[ EMA(n)_t = \frac{2}{n+1}(P_t - EMA_{t-1}) + EMA_{t-1} \]

Where \( P_t \) is the closing price of a market on day \( t \) and \( n \) is the number of periods used in calculating the moving average. MACD itself is calculated as:

\[ MACD_t = EMA(s)_t - EMA(l)_t \]

where \( EMA(s)_t \) is the short moving average and \( EMA(l)_t \) is the long one. In addition an EMA of the MACD itself is calculated in order to generate trade signals and is often referred to as the “trigger line”. Thus a particular MACD trading rule is often expressed in the form \( MACD(s,l,k) \) where \( s \) is the number of periods of the short EMA, \( l \) the number of periods of the long EMA and \( k \) the period used to average the MACD for the trigger line.
Appendix B. Technical Indicators

B.2 Aroon Indicator

The Sanskrit word aroon means "dawn’s early light" and the Aroon indicator attempts to show when a new market trend is dawning (Chande and Kroll, 1994). The indicator is made up of two lines (Aroon Up and Aroon Down) that measure how long it has been since the highest high and lowest low has occurred within an n period range, and an oscillator value that is the difference between the two. Aroon Up (or Down) is the elapsed time, expressed as a percentage, between today and the highest (or lowest) price in the last n periods. If the current price is a new high (or low) Aroon Up (or Aroon Down) will be 100. Each subsequent period without another new high (or low) causes Aroon up (down) to decrease by \( \frac{1}{n} \times 100 \).

\[
Aroon_{Up} = 100 \times \left( \frac{n - \text{PeriodSinceHighestHigh}}{n} \right)
\]

\[
Aroon_{Down} = 100 \times \left( \frac{n - \text{PeriodSinceLowestLow}}{n} \right)
\]

When the Aroon Up is between a value of 70 and 100 it indicates an upward trend. When the Aroon Down is staying between 70 and 100 then it indicates an downward trend. A strong upward trend is indicated when the Aroon Up is above 70 while the Aroon Down is below 30. Likewise, a strong downward trend is indicated when the Aroon Down is above 70 while the Aroon Up is below 30. Also the crossing over of the lines is significant. When the Aroon Down crosses above the Aroon Up, it indicates a weakening of the upward trend (and vice versa).

The Aroon Oscillator signals that an upward trend is occurring when it is above zero and a downward trend is occurring when it falls below zero. The farther away the oscillator is from the zero line, the stronger the trend.

B.3 Parabolic Stop-and-Reverse (SAR)

The Parabolic Stop-and-Reverse (SAR) is a quite complex indicator developed by Welles Wilder in 1978 (Wilder, 1978). The calculation for SAR in rising and falling markets are different and are usually presented separately.

If the market is rising SAR is calculated as:

\[
\text{Current SAR} = \text{Prior SAR} + \text{Prior AF}(\text{Prior EP} - \text{Prior SAR})
\]
where:

- Prior SAR is the SAR value for the previous time period, for example the previous day’s value.
- Extreme Point (EP) is the highest high of the current trend.
- Acceleration Factor (AF) starts at 0.02, and increases by 0.02 each time the market makes a new high (Extreme Point). The maximum value the AF can reach is 0.20, at which point it is capped.

Note: SAR can never be greater than the value of the previous two periods’ lows. Should SAR be above one of those lows, it is set to the lowest of the two.

If the market is falling SAR is calculated as:

\[
\text{Current SAR} = \text{Prior SAR} - \text{Prior AF}(\text{Prior SAR} - \text{Prior EP})
\]

Note: SAR can never be less than the value of the previous two periods’ highs. Should SAR be less than one of those highs, it is set to the lowest of the two.

**B.4 Stochastic**

The stochastic oscillator measures where a particular close price is in relation to the highest high and lowest low in the range under study (Lane, 1986). It is usually drawn on a chart as two lines, one is %K and the other is its moving average usually called %D.

The calculation of the stochastic involves four variables:

1. %K Period - the number of periods used in the calculation (see below).
2. %K Slowing Period - smoothing period applied to %K.
3. %D Period - the number of time periods used in the moving average of %K to generate %D.
4. %D Method - the moving average method used to calculate %D.
%K is calculated as follows:

$$%K = 100 \times \left( \frac{\text{Today's Close} - \text{Lowest Low in n Periods}}{\text{Highest High in n Periods} - \text{Lowest Low in n Periods}} \right)$$

The stochastic is used in a variety of ways. One popular method is to buy when the stochastic falls below a particular level then rises back above that level (and vice versa for a short trade). An alternative technique is to buy when the %K rises above %D and sell when it falls under %K.

### B.5 Rate of Change (ROC)

The Rate of Change or ROC indicator highlights the difference between a particular price (e.g. closing price) and the same price a number of periods previously (Appel, 2005). This value can be expressed in absolute terms or a percentage rise or fall. The calculation is as follows:

$$ROC = 100 \times \left( \frac{\text{Today's Close} - \text{Today's Close n Periods Ago}}{\text{Today's Close n Periods Ago}} \right)$$

The ROC can be calculated from a wide range of time periods, with 12 and 25 days being the most common. The ROC is typically used as an over-bought / over-sold indicator to provide evidence for when a market turn maybe expected.
Appendix C

Summary of Results

C.1 Chapter 4 Results

Table C.1: Chapter 4 Dax Results

<table>
<thead>
<tr>
<th>Methodology</th>
<th>LongPL</th>
<th>ShortPL</th>
<th>Av L PL</th>
<th>Av S PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive Long</td>
<td>-1714</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Naive Long 2</td>
<td>2649</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Reverse Prev</td>
<td>947</td>
<td>3131</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Reverse Prev Stop Loss</td>
<td>1305</td>
<td>6279</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>SMA 5</td>
<td>2113</td>
<td>3278</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>SMA 25</td>
<td>1367</td>
<td>3427</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>SMA 50</td>
<td>779</td>
<td>3447</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>SMA 100</td>
<td>714</td>
<td>2339</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>SMA 200</td>
<td>3401</td>
<td>4416</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>SMA 100</td>
<td>3652</td>
<td>6618</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>SMA 100</td>
<td>1392</td>
<td>5272</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>MACD</td>
<td>-791</td>
<td>1424</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Aroon</td>
<td>5308</td>
<td>5257</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Aroon Stop Loss</td>
<td>5410</td>
<td>7465</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>SAR</td>
<td>-3856</td>
<td>-2353</td>
<td>-2</td>
<td>-2</td>
</tr>
<tr>
<td>MACD Reversal</td>
<td>391</td>
<td>407</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Stoch</td>
<td>-28</td>
<td>1673</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Stoch Stop Loss</td>
<td>1173</td>
<td>3889</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>ROC</td>
<td>1026</td>
<td>180</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Daily Breakout</td>
<td>12225</td>
<td>13411</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>90% Quantile Breakout</td>
<td>7841</td>
<td>6371</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Hammer Candlestick</td>
<td>594</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Engulfing Candlestick</td>
<td>-920</td>
<td>-258</td>
<td>-7</td>
<td>-2</td>
</tr>
<tr>
<td>Engulfing Candlestick in Trend</td>
<td>-874</td>
<td>-513</td>
<td>-20</td>
<td>-7</td>
</tr>
<tr>
<td>Doji Candlestick</td>
<td>-826</td>
<td>-1132</td>
<td>-8</td>
<td>-6</td>
</tr>
</tbody>
</table>
### Table C.2: Chapter 4 CAC Results

<table>
<thead>
<tr>
<th>Methodology</th>
<th>LongPL</th>
<th>ShortPL</th>
<th>Av L PL</th>
<th>Av S PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive Long</td>
<td>-6725</td>
<td>0</td>
<td>-2</td>
<td>0</td>
</tr>
<tr>
<td>Naive Long 2</td>
<td>-1667</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Reverse Prev</td>
<td>940</td>
<td>7810</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Reverse Prev Stop Loss</td>
<td>1335</td>
<td>8165</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>SMA 5</td>
<td>-3952</td>
<td>2338</td>
<td>-2</td>
<td>1</td>
</tr>
<tr>
<td>SMA 25</td>
<td>-5058</td>
<td>1615</td>
<td>-2</td>
<td>1</td>
</tr>
<tr>
<td>SMA 50</td>
<td>-5323</td>
<td>1029</td>
<td>-3</td>
<td>1</td>
</tr>
<tr>
<td>SMA 100</td>
<td>-2363</td>
<td>3188</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>SMA 200</td>
<td>-1219</td>
<td>3923</td>
<td>-1</td>
<td>3</td>
</tr>
<tr>
<td>SMA 100</td>
<td>-172</td>
<td>5178</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>SMA 100</td>
<td>-1822</td>
<td>4658</td>
<td>-1</td>
<td>3</td>
</tr>
<tr>
<td>MACD</td>
<td>-4153</td>
<td>2188</td>
<td>-2</td>
<td>1</td>
</tr>
<tr>
<td>Aroon</td>
<td>-1638</td>
<td>4919</td>
<td>-1</td>
<td>4</td>
</tr>
<tr>
<td>Aroon Stop Loss</td>
<td>-1224</td>
<td>6086</td>
<td>-1</td>
<td>5</td>
</tr>
<tr>
<td>SAR</td>
<td>-5584</td>
<td>1034</td>
<td>-3</td>
<td>1</td>
</tr>
<tr>
<td>MACD Reversal</td>
<td>-545</td>
<td>2657</td>
<td>-1</td>
<td>5</td>
</tr>
<tr>
<td>Stoch</td>
<td>-4540</td>
<td>1817</td>
<td>-3</td>
<td>1</td>
</tr>
<tr>
<td>Stoch Stop Loss</td>
<td>-3493</td>
<td>2730</td>
<td>-2</td>
<td>2</td>
</tr>
<tr>
<td>ROC</td>
<td>952</td>
<td>956</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Daily Breakout</td>
<td>3491</td>
<td>6955</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>90% Quantile Breakout</td>
<td>2647</td>
<td>5085</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Hammer Candlestick</td>
<td>-793</td>
<td>0</td>
<td>-5</td>
<td>0</td>
</tr>
<tr>
<td>Engulfing Candlestick</td>
<td>-319</td>
<td>228</td>
<td>-2</td>
<td>1</td>
</tr>
<tr>
<td>Engulfing Candlestick in Trend</td>
<td>-118</td>
<td>-666</td>
<td>-3</td>
<td>-11</td>
</tr>
<tr>
<td>Doji Candlestick</td>
<td>-747</td>
<td>-326</td>
<td>-6</td>
<td>-2</td>
</tr>
</tbody>
</table>
### Table C.3: Chapter 4 FTSE Results

<table>
<thead>
<tr>
<th>Methodology</th>
<th>LongPL</th>
<th>ShortPL</th>
<th>Av L PL</th>
<th>Av S PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive Long</td>
<td>149</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Naive Long 2</td>
<td>86</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Reverse Prev</td>
<td>4284</td>
<td>4115</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Reverse Prev Stop Loss</td>
<td>5537</td>
<td>5200</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>SMA 5</td>
<td>-4724</td>
<td>-5331</td>
<td>-2</td>
<td>-3</td>
</tr>
<tr>
<td>SMA 25</td>
<td>-1013</td>
<td>-1940</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>SMA 50</td>
<td>-2226</td>
<td>-2769</td>
<td>-1</td>
<td>-2</td>
</tr>
<tr>
<td>SMA 100</td>
<td>-889</td>
<td>-1692</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>SMA 200</td>
<td>-158</td>
<td>-835</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>SMA 100</td>
<td>1114</td>
<td>6303</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>SMA 100</td>
<td>-885</td>
<td>1892</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>MACD</td>
<td>63</td>
<td>-839</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Aroon</td>
<td>3042</td>
<td>5715</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Aroon Stop Loss</td>
<td>3091</td>
<td>8015</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>SAR</td>
<td>-1141</td>
<td>-1663</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>MACD Reversal</td>
<td>2080</td>
<td>1649</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Stoch</td>
<td>-73</td>
<td>-744</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Stoch Stop Loss</td>
<td>1640</td>
<td>1424</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ROC</td>
<td>1147</td>
<td>1880</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Daily Breakout</td>
<td>13189</td>
<td>18481</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>90% Quantile Breakout</td>
<td>10758</td>
<td>15295</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>Hammer Candlestick</td>
<td>834</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Engulfing Candlestick</td>
<td>-1721</td>
<td>1185</td>
<td>-4</td>
<td>3</td>
</tr>
<tr>
<td>Engulfing Candlestick in Trend</td>
<td>-1217</td>
<td>-782</td>
<td>-8</td>
<td>-3</td>
</tr>
<tr>
<td>Doji Candlestick</td>
<td>-697</td>
<td>418</td>
<td>-8</td>
<td>3</td>
</tr>
</tbody>
</table>
### Table C.4: Chapter 4 Dow Results

<table>
<thead>
<tr>
<th>Methodology</th>
<th>LongPL</th>
<th>ShortPL</th>
<th>Av L PL</th>
<th>Av S PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive Long</td>
<td>9816</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Naive Long 2</td>
<td>5219</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Reverse Prev</td>
<td>15799</td>
<td>6047</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>Reverse Prev Stop Loss</td>
<td>-8571</td>
<td>-14604</td>
<td>-5</td>
<td>-8</td>
</tr>
<tr>
<td>SMA 5</td>
<td>408</td>
<td>-9630</td>
<td>0</td>
<td>-6</td>
</tr>
<tr>
<td>SMA 25</td>
<td>1138</td>
<td>-9204</td>
<td>1</td>
<td>-7</td>
</tr>
<tr>
<td>SMA 50</td>
<td>5478</td>
<td>-5876</td>
<td>3</td>
<td>-4</td>
</tr>
<tr>
<td>SMA 100</td>
<td>2576</td>
<td>-8220</td>
<td>1</td>
<td>-6</td>
</tr>
<tr>
<td>SMA 200</td>
<td>6378</td>
<td>-4567</td>
<td>3</td>
<td>-4</td>
</tr>
<tr>
<td>SMA 100</td>
<td>-18212</td>
<td>-8229</td>
<td>-9</td>
<td>-6</td>
</tr>
<tr>
<td>SMA 100</td>
<td>-11771</td>
<td>-14696</td>
<td>-6</td>
<td>-11</td>
</tr>
<tr>
<td>MACD</td>
<td>5592</td>
<td>-5190</td>
<td>3</td>
<td>-3</td>
</tr>
<tr>
<td>Aroon</td>
<td>12131</td>
<td>3811</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Aroon Stop Loss</td>
<td>-5922</td>
<td>-9341</td>
<td>-3</td>
<td>-8</td>
</tr>
<tr>
<td>SAR</td>
<td>-1301</td>
<td>-1112</td>
<td>-1</td>
<td>-7</td>
</tr>
<tr>
<td>MACD Reversal</td>
<td>3882</td>
<td>-807</td>
<td>7</td>
<td>-2</td>
</tr>
<tr>
<td>Stoch</td>
<td>867</td>
<td>-9414</td>
<td>0</td>
<td>-5</td>
</tr>
<tr>
<td>Stoch Stop Loss</td>
<td>-13969</td>
<td>-27388</td>
<td>-8</td>
<td>-16</td>
</tr>
<tr>
<td>ROC</td>
<td>8517</td>
<td>3396</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>Daily Breakout</td>
<td>-19598</td>
<td>-28337</td>
<td>-11</td>
<td>-17</td>
</tr>
<tr>
<td>90% Quantile Breakout</td>
<td>-30262</td>
<td>-34854</td>
<td>-24</td>
<td>-28</td>
</tr>
<tr>
<td>Hammer Candlestick</td>
<td>2097</td>
<td>0</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>Engulfing Candlestick</td>
<td>-770</td>
<td>-3662</td>
<td>-4</td>
<td>-28</td>
</tr>
<tr>
<td>Engulfing Candlestick in Trend</td>
<td>202</td>
<td>-1154</td>
<td>4</td>
<td>-11</td>
</tr>
<tr>
<td>Doji Candlestick</td>
<td>-763</td>
<td>-2869</td>
<td>-5</td>
<td>-10</td>
</tr>
</tbody>
</table>
## Appendix C. Summary of Results

### Table C.5: Chapter 4 Nikkei Results

<table>
<thead>
<tr>
<th>Methodology</th>
<th>LongPL</th>
<th>ShortPL</th>
<th>Av L PL</th>
<th>Av S PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive Long</td>
<td>-18125</td>
<td>0</td>
<td>-5</td>
<td>0</td>
</tr>
<tr>
<td>Naive Long 2</td>
<td>-2712</td>
<td>0</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>Reverse Prev</td>
<td>2324</td>
<td>20486</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Reverse Prev Stop Loss</td>
<td>18137</td>
<td>27909</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>SMA 5</td>
<td>3078</td>
<td>20401</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>SMA 25</td>
<td>-7878</td>
<td>10770</td>
<td>-4</td>
<td>7</td>
</tr>
<tr>
<td>SMA 50</td>
<td>-6054</td>
<td>11408</td>
<td>-4</td>
<td>7</td>
</tr>
<tr>
<td>SMA 100</td>
<td>-6235</td>
<td>8381</td>
<td>-4</td>
<td>5</td>
</tr>
<tr>
<td>SMA 200</td>
<td>-5928</td>
<td>6836</td>
<td>-4</td>
<td>4</td>
</tr>
<tr>
<td>SMA 100</td>
<td>8258</td>
<td>33882</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>MACD</td>
<td>-4078</td>
<td>14064</td>
<td>-2</td>
<td>8</td>
</tr>
<tr>
<td>Aroon</td>
<td>-4852</td>
<td>12013</td>
<td>-3</td>
<td>10</td>
</tr>
<tr>
<td>Aroon Stop Loss</td>
<td>3153</td>
<td>22177</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>SAR</td>
<td>-5767</td>
<td>12424</td>
<td>-3</td>
<td>8</td>
</tr>
<tr>
<td>MACD Reversal</td>
<td>199</td>
<td>2828</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Stoch</td>
<td>-10591</td>
<td>7802</td>
<td>-6</td>
<td>5</td>
</tr>
<tr>
<td>Stoch Stop Loss</td>
<td>1647</td>
<td>17977</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>ROC</td>
<td>2971</td>
<td>2546</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Daily Breakout</td>
<td>31988</td>
<td>43554</td>
<td>19</td>
<td>27</td>
</tr>
<tr>
<td>90% Quantile Breakout</td>
<td>23606</td>
<td>31830</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>Hammer Candlestick</td>
<td>-2202</td>
<td>0</td>
<td>-15</td>
<td>0</td>
</tr>
<tr>
<td>Engulfing Candlestick</td>
<td>-3823</td>
<td>-1166</td>
<td>-39</td>
<td>-11</td>
</tr>
<tr>
<td>Engulfing Candlestick in Trend</td>
<td>-1522</td>
<td>-1733</td>
<td>-59</td>
<td>-32</td>
</tr>
<tr>
<td>Doji Candlestick</td>
<td>1296</td>
<td>-2944</td>
<td>12</td>
<td>-22</td>
</tr>
<tr>
<td>Methodology</td>
<td>LongPL</td>
<td>ShortPL</td>
<td>Av L PL</td>
<td>Av S PL</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Naive Long</td>
<td>972</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Naive Long 2</td>
<td>2229</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Reverse Prev</td>
<td>1264</td>
<td>237</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Reverse Prev Stop Loss</td>
<td>2320</td>
<td>1085</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SMA 5</td>
<td>5009</td>
<td>3929</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>SMA 25</td>
<td>3701</td>
<td>2674</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>SMA 50</td>
<td>2804</td>
<td>1864</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SMA 100</td>
<td>2688</td>
<td>1521</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SMA 200</td>
<td>2574</td>
<td>1616</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>SMA 100</td>
<td>4008</td>
<td>3730</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>SMA 100</td>
<td>2881</td>
<td>2149</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>MACD</td>
<td>2563</td>
<td>1569</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Aroon</td>
<td>3735</td>
<td>3540</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Aroon Stop Loss</td>
<td>3786</td>
<td>4159</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>SAR</td>
<td>2071</td>
<td>1097</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>MACD Reversal</td>
<td>-319</td>
<td>-584</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>Stoch</td>
<td>2839</td>
<td>1780</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Stoch Stop Loss</td>
<td>3028</td>
<td>1974</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>ROC</td>
<td>271</td>
<td>1325</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Daily Breakout</td>
<td>17225</td>
<td>19184</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>90% Quantile Breakout</td>
<td>16730</td>
<td>19357</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>Hammer Candlestick</td>
<td>-809</td>
<td>0</td>
<td>-3</td>
<td>0</td>
</tr>
<tr>
<td>Engulfing Candlestick</td>
<td>-6</td>
<td>-600</td>
<td>0</td>
<td>-3</td>
</tr>
<tr>
<td>Engulfing Candlestick in Trend</td>
<td>-49</td>
<td>-27</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>Doji Candlestick</td>
<td>-115</td>
<td>195</td>
<td>-1</td>
<td>2</td>
</tr>
</tbody>
</table>
### C.2 Chapter 5 Results

#### Table C.7: Chapter 5 DAX Results

<table>
<thead>
<tr>
<th>Methodology</th>
<th>LongPL</th>
<th>ShortPL</th>
<th>Av L PL</th>
<th>Av S PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Method</td>
<td>-1640</td>
<td>-1505</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>Drift Method</td>
<td>2310</td>
<td>2445</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Exponential Smoothing</td>
<td>-2029</td>
<td>-1894</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>ARIMA - System 1</td>
<td>-1285</td>
<td>-2522</td>
<td>-5</td>
<td>-9</td>
</tr>
<tr>
<td>ARIMA - System 2</td>
<td>733</td>
<td>-505</td>
<td>3</td>
<td>-2</td>
</tr>
<tr>
<td>ARIMA/ANN Closing Price System 1</td>
<td>-446</td>
<td>-645</td>
<td>-1</td>
<td>-2</td>
</tr>
<tr>
<td>ARIMA/ANN Closing Price System 2</td>
<td>3283</td>
<td>3110</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>ARIMA/k-NN Closing Price System 1</td>
<td>12</td>
<td>-174</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ARIMA/k-NN Closing Price System 2</td>
<td>489</td>
<td>731</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>ARIMA/ANN Up/Down</td>
<td>2321</td>
<td>2122</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>ARIMA/k-NN Up/Down</td>
<td>-1553</td>
<td>-1752</td>
<td>-3</td>
<td>-4</td>
</tr>
<tr>
<td>ARIMA/ANN Up/Down Stop Loss</td>
<td>-430</td>
<td>-1444</td>
<td>-1</td>
<td>-4</td>
</tr>
<tr>
<td>ARIMA/SVM Up/Down</td>
<td>-123</td>
<td>-322</td>
<td>0</td>
<td>-1</td>
</tr>
</tbody>
</table>

#### Table C.8: Chapter 5 CAC Results

<table>
<thead>
<tr>
<th>Methodology</th>
<th>LongPL</th>
<th>ShortPL</th>
<th>Av L PL</th>
<th>Av S PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Method</td>
<td>-1086</td>
<td>3553</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>Drift Method</td>
<td>-2422</td>
<td>2217</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>Exponential Smoothing</td>
<td>-266</td>
<td>4048</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>ARIMA - System 1</td>
<td>872</td>
<td>167</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>ARIMA - System 2</td>
<td>545</td>
<td>-80</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>ARIMA/ANN Closing Price System 1</td>
<td>532</td>
<td>1527</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>ARIMA/ANN Closing Price System 2</td>
<td>-1832</td>
<td>-816</td>
<td>-3</td>
<td>-2</td>
</tr>
<tr>
<td>ARIMA/k-NN Closing Price System 1</td>
<td>-249</td>
<td>747</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>ARIMA/k-NN Closing Price System 2</td>
<td>-966</td>
<td>50</td>
<td>-2</td>
<td>0</td>
</tr>
<tr>
<td>ARIMA/ANN Up/Down</td>
<td>102</td>
<td>1098</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>ARIMA/k-NN Up/Down</td>
<td>270</td>
<td>1265</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>ARIMA/ANN Up/Down Stop Loss</td>
<td>203</td>
<td>1326</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>ARIMA/SVM Up/Down</td>
<td>-1607</td>
<td>-612</td>
<td>-4</td>
<td>-1</td>
</tr>
</tbody>
</table>
### Table C.9: Chapter 5 FTSE Results

<table>
<thead>
<tr>
<th>Methodology</th>
<th>LongPL</th>
<th>ShortPL</th>
<th>Av L PL</th>
<th>Av S PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Method</td>
<td>1680</td>
<td>345</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Drift Method</td>
<td>-518</td>
<td>-1853</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>Exponential Smoothing</td>
<td>3866</td>
<td>2531</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>ARIMA - System 1</td>
<td>990</td>
<td>-249</td>
<td>4</td>
<td>-1</td>
</tr>
<tr>
<td>ARIMA - System 2</td>
<td>941</td>
<td>-383</td>
<td>3</td>
<td>-2</td>
</tr>
<tr>
<td>ARIMA/ANN Closing Price System 1</td>
<td>625</td>
<td>-624</td>
<td>1</td>
<td>-2</td>
</tr>
<tr>
<td>ARIMA/ANN Closing Price System 2</td>
<td>1092</td>
<td>-182</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>ARIMA/k-NN Closing Price System 1</td>
<td>699</td>
<td>-550</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>ARIMA/k-NN Closing Price System 2</td>
<td>-388</td>
<td>-1662</td>
<td>-1</td>
<td>-4</td>
</tr>
<tr>
<td>ARIMA/ANN Up/Down</td>
<td>1400</td>
<td>151</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>ARIMA/k-NN Up/Down</td>
<td>1764</td>
<td>515</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>ARIMA/ANN Up/Down Stop Loss</td>
<td>1919</td>
<td>526</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>ARIMA/SVM Up/Down</td>
<td>2115</td>
<td>866</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

### Table C.10: Chapter 5 Dow Results

<table>
<thead>
<tr>
<th>Methodology</th>
<th>LongPL</th>
<th>ShortPL</th>
<th>Av L PL</th>
<th>Av S PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Method</td>
<td>8356</td>
<td>-2126</td>
<td>7</td>
<td>-1</td>
</tr>
<tr>
<td>Drift Method</td>
<td>5416</td>
<td>-5066</td>
<td>3</td>
<td>-4</td>
</tr>
<tr>
<td>Exponential Smoothing</td>
<td>12901</td>
<td>2419</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>ARIMA - System 1</td>
<td>1539</td>
<td>-3356</td>
<td>7</td>
<td>-11</td>
</tr>
<tr>
<td>ARIMA - System 2</td>
<td>2598</td>
<td>-2221</td>
<td>9</td>
<td>-10</td>
</tr>
<tr>
<td>ARIMA/ANN Closing Price System 1</td>
<td>2846</td>
<td>-3979</td>
<td>5</td>
<td>-9</td>
</tr>
<tr>
<td>ARIMA/ANN Closing Price System 2</td>
<td>3829</td>
<td>-2942</td>
<td>7</td>
<td>-7</td>
</tr>
<tr>
<td>ARIMA/k-NN Closing Price System 1</td>
<td>4436</td>
<td>-2389</td>
<td>11</td>
<td>-4</td>
</tr>
<tr>
<td>ARIMA/k-NN Closing Price System 2</td>
<td>2969</td>
<td>-3411</td>
<td>5</td>
<td>-9</td>
</tr>
<tr>
<td>ARIMA/ANN Up/Down</td>
<td>5218</td>
<td>-1607</td>
<td>6</td>
<td>-10</td>
</tr>
<tr>
<td>ARIMA/k-NN Up/Down</td>
<td>3211</td>
<td>-3614</td>
<td>6</td>
<td>-8</td>
</tr>
<tr>
<td>ARIMA/ANN Up/Down Stop Loss</td>
<td>5475</td>
<td>-1922</td>
<td>11</td>
<td>-4</td>
</tr>
<tr>
<td>ARIMA/SVM Up/Down</td>
<td>2138</td>
<td>-4686</td>
<td>10</td>
<td>-6</td>
</tr>
</tbody>
</table>
### Table C.11: Chapter 5 Nikkei Results

<table>
<thead>
<tr>
<th>Methodology</th>
<th>LongPL</th>
<th>ShortPL</th>
<th>Av L PL</th>
<th>Av S PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Method</td>
<td>-32</td>
<td>10646</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Drift Method</td>
<td>-6939</td>
<td>3739</td>
<td>-4</td>
<td>3</td>
</tr>
<tr>
<td>Exponential Smoothing</td>
<td>-2741</td>
<td>7937</td>
<td>-2</td>
<td>5</td>
</tr>
<tr>
<td>ARIMA - System 1</td>
<td>4268</td>
<td>3071</td>
<td>21</td>
<td>13</td>
</tr>
<tr>
<td>ARIMA - System 2</td>
<td>179</td>
<td>-916</td>
<td>1</td>
<td>-4</td>
</tr>
<tr>
<td>ARIMA/ANN Closing Price System 1</td>
<td>913</td>
<td>2039</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>ARIMA/ANN Closing Price System 2</td>
<td>-4485</td>
<td>-3229</td>
<td>-9</td>
<td>-7</td>
</tr>
<tr>
<td>ARIMA/k-NN Closing Price System 1</td>
<td>-66</td>
<td>1060</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>ARIMA/k-NN Closing Price System 2</td>
<td>-2916</td>
<td>-1660</td>
<td>-6</td>
<td>-4</td>
</tr>
<tr>
<td>ARIMA/ANN Up/Down</td>
<td>234</td>
<td>1360</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>ARIMA/k-NN Up/Down</td>
<td>2707</td>
<td>3834</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>ARIMA/ANN Up/Down Stop Loss</td>
<td>4021</td>
<td>2804</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>ARIMA/SVM Up/Down</td>
<td>9</td>
<td>1135</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

### Table C.12: Chapter 5 AORD Results

<table>
<thead>
<tr>
<th>Methodology</th>
<th>LongPL</th>
<th>ShortPL</th>
<th>Av L PL</th>
<th>Av S PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Method</td>
<td>-1333</td>
<td>-2149</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>Drift Method</td>
<td>1476</td>
<td>660</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Exponential Smoothing</td>
<td>645</td>
<td>-171</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ARIMA - System 1</td>
<td>635</td>
<td>-247</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>ARIMA - System 2</td>
<td>811</td>
<td>-117</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>ARIMA/ANN Closing Price System 1</td>
<td>-3036</td>
<td>-371</td>
<td>-5</td>
<td>-1</td>
</tr>
<tr>
<td>ARIMA/ANN Closing Price System 2</td>
<td>-2783</td>
<td>-137</td>
<td>-5</td>
<td>0</td>
</tr>
<tr>
<td>ARIMA/k-NN Closing Price System 1</td>
<td>497</td>
<td>3162</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>ARIMA/k-NN Closing Price System 2</td>
<td>-3449</td>
<td>-804</td>
<td>-6</td>
<td>-2</td>
</tr>
<tr>
<td>ARIMA/ANN Up/Down</td>
<td>-2712</td>
<td>-47</td>
<td>-3</td>
<td>-12</td>
</tr>
<tr>
<td>ARIMA/k-NN Up/Down</td>
<td>748</td>
<td>3413</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>ARIMA/ANN Up/Down Stop Loss</td>
<td>570</td>
<td>3424</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>ARIMA/SVM Up/Down</td>
<td>-2364</td>
<td>301</td>
<td>-4</td>
<td>1</td>
</tr>
</tbody>
</table>
Bibliography


